8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactions of Streptococcus suis serotype 9 with host cells and role of the capsular polysaccharide: Comparison with serotypes 2 and 14

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptococcus suis is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, of which serotype 2 is the most widespread, with serotype 14 also causing infections in humans in South-East Asia. Knowledge of its pathogenesis and virulence are almost exclusively based on these two serotypes. Though serotype 9 is responsible for the greatest number of porcine cases in Spain, the Netherlands and Germany, very little information is currently available regarding this serotype. Of the different virulence factors, the capsular polysaccharide (CPS) is required for S. suis virulence as it promotes resistance to phagocytosis and killing and masks surface components responsible for host cell activation. However, these roles have been described for serotypes 2 and 14, whose CPSs are structurally and compositionally similar, both containing sialic acid. Consequently, we evaluated herein the interactions of serotype 9 with host cells and the role of its CPS, which greatly differs from those of serotypes 2 and 14. Results demonstrated that serotype 9 adhesion to but not invasion of respiratory epithelial cells was greater than that of serotypes 2 and 14. Furthermore serotype 9 was more internalized by macrophages but equally resistant to whole blood killing. Though recognition of serotypes 2, 9 and 14 by DCs required MyD88-dependent signaling, in vitro pro-inflammatory mediator production induced by serotype 9 was much lower. In vivo, however, serotype 9 causes an exacerbated inflammatory response, which combined with persistent bacterial presence, is probably responsible for host death during the systemic infection. Though presence of the serotype 9 CPS masks surface components less efficiently than those of serotypes 2 and 14, the serotype 9 CPS remains critical for virulence as it is required for survival in blood and development of clinical disease, and this regardless of its unique composition and structure.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing

          Streptococcus suis is an important pathogen causing economic problems in the pig industry. Moreover, it is a zoonotic agent causing severe infections to people in close contact with infected pigs or pork-derived products. Although considered sporadic in the past, human S. suis infections have been reported during the last 45 years, with two large outbreaks recorded in China. In fact, the number of reported human cases has significantly increased in recent years. In this review, we present the worldwide distribution of serotypes and sequence types (STs), as determined by multilocus sequence typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods employed for S. suis identification and typing, the current epidemiological knowledge regarding serotypes and STs and the zoonotic potential of S. suis are discussed. Increased awareness of S. suis in both human and veterinary diagnostic laboratories and further establishment of typing methods will contribute to our knowledge of this pathogen, especially in regions where complete and/or recent data is lacking. More research is required to understand differences in virulence that occur among S. suis strains and if these differences can be associated with specific serotypes or STs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The phagocytes: neutrophils and monocytes.

            The production and deployment of phagocytes are central functions of the hematopoietic system. In the 1950s, radioisotopic studies demonstrated the high production rate and short lifespan of neutrophils and allowed researchers to follow the monocytes as they moved from the marrow through the blood to become tissue macrophages, histiocytes, and dendritic cells. Subsequently, the discovery of the colony-stimulating factors greatly improved understanding the regulation of phagocyte production. The discovery of the microbicidal myeloperoxidase-H2O2-halide system and the importance of NADPH oxidase to the generation of H2O2 also stimulated intense interest in phagocyte disorders. More recent research has focused on membrane receptors and the dynamics of the responses of phagocytes to external factors including immunoglobulins, complement proteins, cytokines, chemokines, integrins, and selectins. Phagocytes express toll-like receptors that aid in the clearance of a wide range of microbial pathogens and their products. Phagocytes are also important sources of pro- and anti-inflammatory cytokines, thus participating in host defenses through a variety of mechanisms. Over the last 50 years, many genetic and molecular disorders of phagocytes have been identified, leading to improved diagnosis and treatment of conditions which predispose patients to the risk of recurrent fevers and infectious diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis.

              Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: ConceptualizationRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                10 October 2019
                2019
                : 14
                : 10
                : e0223864
                Affiliations
                [001]Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
                All India Institute of Medical Sciences, INDIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-2196-2212
                Article
                PONE-D-19-18044
                10.1371/journal.pone.0223864
                6786723
                31600314
                62fabf32-de0b-49a6-bba7-392120289d4e
                © 2019 Auger et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 July 2019
                : 30 September 2019
                Page count
                Figures: 9, Tables: 2, Pages: 23
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100000038, Natural Sciences and Engineering Research Council of Canada;
                Award ID: 04435
                Award Recipient :
                This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) [04435 to MG]. JPA is the recipient of an Alexander Graham Bell Graduate Scholarship – Doctoral Program from NSERC. The transmission electron microscopy infrastructure was financially supported by the Canada Foundation for Innovation Leader’s Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Infectious Diseases
                Zoonoses
                Streptococcus Suis
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Biology and Life Sciences
                Genetics
                Mutation
                Mutant Strains
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Phagocytosis
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Immune Receptors
                Toll-like Receptors
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Immune Receptors
                Toll-like Receptors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Immune Receptors
                Toll-like Receptors
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Immune Receptors
                Toll-like Receptors
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Transmission and Infection
                Host Cells
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Sialic Acids
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Sialic Acids
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article