20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The roles of lipids and nucleic acids in HIV-1 assembly

      review-article
      ,
      Frontiers in Microbiology
      Frontiers Media S.A.
      matrix, RNA, PI(4.5)P2, lipid, Gag

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly.

          During the late phase of HIV type 1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to the plasma membrane of most hematopoietic cell types, where they colocalize at lipid rafts and assemble into immature virions. Membrane binding is mediated by the matrix (MA) domain of Gag, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Although exposure is known to promote membrane binding, the mechanism by which Gag is targeted to specific membranes has yet to be established. Recent studies have shown that phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P(2)], a factor that regulates localization of cellular proteins to the plasma membrane, also regulates Gag localization and assembly. Here we show that PI(4,5)P(2) binds directly to HIV-1 MA, inducing a conformational change that triggers myristate exposure. Related phosphatidylinositides PI, PI(3)P, PI(4)P, PI(5)P, and PI(3,5)P(2) do not bind MA with significant affinity or trigger myristate exposure. Structural studies reveal that PI(4,5)P(2) adopts an "extended lipid" conformation, in which the inositol head group and 2'-fatty acid chain bind to a hydrophobic cleft, and the 1'-fatty acid and exposed myristyl group bracket a conserved basic surface patch previously implicated in membrane binding. Our findings indicate that PI(4,5)P(2) acts as both a trigger of the myristyl switch and a membrane anchor and suggest a potential mechanism for targeting Gag to membrane rafts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altering the tropism of lentiviral vectors through pseudotyping.

            The host range of retroviral vectors including lentiviral vectors can be expanded or altered by a process known as pseudotyping. Pseudotyped lentiviral vectors consist of vector particles bearing glycoproteins (GPs) derived from other enveloped viruses. Such particles possess the tropism of the virus from which the GP was derived. For example, to exploit the natural neural tropism of rabies virus, vectors designed to target the central nervous system have been pseudotyped using rabies virus-derived GPs. Among the first and still most widely used GPs for pseudotyping lentiviral vectors is the vesicular stomatitis virus GP (VSV-G), due to the very broad tropism and stability of the resulting pseudotypes. Pseudotypes involving VSV-G have become effectively the standard for evaluating the efficiency of other pseudotypes. This review samples a few of the more prominent examples from the ever-expanding list of published lentiviral pseudotypes, noting comparisons made with pseudotypes involving VSV-G in terms of titer, viral particle stability, toxicity, and host-cell specificity. Particular attention is paid to publications of successfully targeting a specific organ or cell types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane.

              A critical early event in the HIV type 1 (HIV-1) particle assembly pathway is the targeting of the Gag protein to the site of virus assembly. In many cell types, assembly takes place predominantly at the plasma membrane. Cellular factors that regulate Gag targeting remain undefined. The phosphoinositide phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] controls the plasma membrane localization of a number of cellular proteins. To explore the possibility that this lipid may be involved in Gag targeting and virus particle production, we overexpressed phosphoinositide 5-phosphatase IV, an enzyme that depletes cellular PI(4,5)P2, or overexpressed a constitutively active form of Arf6 (Arf6/Q67L), which induces the formation of PI(4,5)P2-enriched endosomal structures. Both approaches severely reduced virus production. Upon 5-phosphatase IV overexpression, Gag was no longer localized on the plasma membrane but instead was retargeted to late endosomes. Strikingly, in cells expressing Arf6/Q67L, Gag was redirected to the PI(4,5)P2-enriched vesicles and HIV-1 virions budded into these vesicles. These results demonstrate that PI(4,5)P2 plays a key role in Gag targeting to the plasma membrane and thus serves as a cellular determinant of HIV-1 particle production.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                28 May 2014
                2014
                : 5
                : 253
                Affiliations
                Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
                Author notes

                Edited by: Jamil S. Saad, University of Alabama at Birmingham, USA

                Reviewed by: Alan Rein, National Cancer Institute, USA; Leslie Parent, Penn State College of Medicine, USA

                *Correspondence: Ayna Alfadhli and Eric Barklis, Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA e-mail: alfadhli@ 123456ohsu.edu ; barklis@ 123456ohsu.edu

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00253
                4042026
                632be64e-89ae-45e6-9ca5-e160a18dcbe1
                Copyright © 2014 Alfadhli and Barklis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 February 2014
                : 08 May 2014
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 153, Pages: 11, Words: 0
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                matrix,rna,pi(4.5)p2,lipid,gag
                Microbiology & Virology
                matrix, rna, pi(4.5)p2, lipid, gag

                Comments

                Comment on this article