25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      11β-Hydroxysteroid Dehydrogenase Activity in the Brain Does Not Contribute to Systemic Interconversion of Cortisol and Cortisone in Healthy Men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context and Objective:

          11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyses regeneration of cortisol in liver, adipose tissue, and skeletal muscle, making a substantial contribution to circulating cortisol as demonstrated in humans by combining stable isotope tracer infusion with arteriovenous sampling. In the brain, 11βHSD1 is a potential therapeutic target implicated in age-associated cognitive dysfunction. We aimed to quantify brain 11βHSD1 activity, both to assess its contribution to systemic cortisol/cortisone turnover and to develop a tool for measuring 11βHSD1 in dementia and following administration of 11βHSD1 inhibitors.

          Design, Setting, and Participants:

          With ethical approval and informed consent, 8 healthy men aged 38.1 years (sd 16.5) underwent an ECG-gated phase-contrast magnetic resonance scan to quantify internal jugular vein blood flow and were infused with 1,2 [ 2H] 2-cortisone and 9,11,12,12 [ 2H] 4-cortisol for 3 h before samples were obtained from the internal jugular vein and an arterialized hand vein. Steroids were quantified by liquid chromatography-tandem mass spectrometry.

          Main Outcome Measures and Results:

          Steady state tracer enrichments were achieved and systemic indices of cortisol/cortisone interconversion were consistent with previous studies in healthy men. However, there was no measurable release or production of cortisol, 9,12,12 [ 2H] 3-cortisol or cortisone into the internal jugular vein.

          Conclusions:

          Although cerebral 11βHSD1 reductase activity may be greater in cognitively impaired patients, in healthy men any contribution of 11βHSD1 in the brain to systemic cortisol/cortisone turnover is negligible. The influence of 11βHSD1 in the brain is likely confined to subregions, notably the hippocampus. Alternative approaches are required to quantify pharmacodynamics effects of 11βHSD1 inhibitors in the human brain.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced cortisol metabolism during critical illness.

          Critical illness is often accompanied by hypercortisolemia, which has been attributed to stress-induced activation of the hypothalamic-pituitary-adrenal axis. However, low corticotropin levels have also been reported in critically ill patients, which may be due to reduced cortisol metabolism. In a total of 158 patients in the intensive care unit and 64 matched controls, we tested five aspects of cortisol metabolism: daily levels of corticotropin and cortisol; plasma cortisol clearance, metabolism, and production during infusion of deuterium-labeled steroid hormones as tracers; plasma clearance of 100 mg of hydrocortisone; levels of urinary cortisol metabolites; and levels of messenger RNA and protein in liver and adipose tissue, to assess major cortisol-metabolizing enzymes. Total and free circulating cortisol levels were consistently higher in the patients than in controls, whereas corticotropin levels were lower (P<0.001 for both comparisons). Cortisol production was 83% higher in the patients (P=0.02). There was a reduction of more than 50% in cortisol clearance during tracer infusion and after the administration of 100 mg of hydrocortisone in the patients (P≤0.03 for both comparisons). All these factors accounted for an increase by a factor of 3.5 in plasma cortisol levels in the patients, as compared with controls (P<0.001). Impaired cortisol clearance also correlated with a lower cortisol response to corticotropin stimulation. Reduced cortisol metabolism was associated with reduced inactivation of cortisol in the liver and kidney, as suggested by urinary steroid ratios, tracer kinetics, and assessment of liver-biopsy samples (P≤0.004 for all comparisons). During critical illness, reduced cortisol breakdown, related to suppressed expression and activity of cortisol-metabolizing enzymes, contributed to hypercortisolemia and hence corticotropin suppression. The diagnostic and therapeutic implications for critically ill patients are unknown. (Funded by the Belgian Fund for Scientific Research and others; ClinicalTrials.gov numbers, NCT00512122 and NCT00115479; and Current Controlled Trials numbers, ISRCTN49433936, ISRCTN49306926, and ISRCTN08083905.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics.

            In aging humans and rodents, inter-individual differences in cognitive function have been ascribed to variations in long-term glucocorticoid exposure. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regenerates the active glucocorticoid cortisol from circulating inert cortisone, thus amplifying intracellular glucocorticoid levels in some tissues. We show that 11beta-HSD1, but not 11beta-HSD2, mRNA is expressed in the human hippocampus, frontal cortex, and cerebellum. In two randomized, double-blind, placebo-controlled crossover studies, administration of the 11beta-HSD inhibitor carbenoxolone (100 mg three times per day) improved verbal fluency (P < 0.01) after 4 weeks in 10 healthy elderly men (aged 55-75 y) and improved verbal memory (P < 0.01) after 6 weeks in 12 patients with type 2 diabetes (52-70 y). Although carbenoxolone has been reported to enhance hepatic insulin sensitivity in short-term studies, there were no changes in glycemic control or serum lipid profile, nor was plasma cortisol altered. 11beta-HSD1 inhibition may be a new approach to prevent/ameliorate cognitive decline.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lack of tissue glucocorticoid reactivation in 11beta -hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments.

              11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11beta-HSD-1 acts as a functional 11beta-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11beta-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11beta-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11beta-HSD-1 inhibitors may protect against hippocampal function decline with age.
                Bookmark

                Author and article information

                Journal
                J Clin Endocrinol Metab
                J. Clin. Endocrinol. Metab
                jcem
                jceme
                jcem
                The Journal of Clinical Endocrinology and Metabolism
                Endocrine Society (Chevy Chase, MD )
                0021-972X
                1945-7197
                February 2015
                13 November 2014
                13 November 2014
                : 100
                : 2
                : 483-489
                Affiliations
                MRC Centre for Cognitive Aging and Cognitive Epidemiology (A.H.M.K.), Geriatric Medicine Unit, and Centre for Clinical Brain Sciences (S.S., I.M., P.A.), University of Edinburgh, Edinburgh, United Kingdom; Clinical Research Imaging Centre (S.S.) and BHF Centre for Cardiovascular Science (S.S., R.A., B.R.W.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Critical Care (P.A.), Western General Hospital, NHS Lothian University Hospitals Division, Edinburgh EH4 2XU, United Kingdom
                Author notes
                Address all correspondence and requests for reprints to: Dr Alixe HM Kilgour, Geriatric Medicine, University of Edinburgh, Room S1642, Royal Infirmary Edinburgh, 51 Little France Crescent, Edinburgh EH16 5SA, UK. E-mail: a.kilgour@ 123456ed.ac.uk .
                Article
                14-3277
                10.1210/jc.2014-3277
                4318893
                25393644
                63875070-4f8a-474b-adc6-bbcea34a155d

                This article has been published under the terms of the Creative Commons Attribution License ( CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s). Author(s) grant(s) The Endocrine Society the exclusive right to publish the article and identify itself as the original publisher.

                History
                : 22 August 2014
                : 10 November 2014
                Categories
                1
                10
                Original Articles

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article