10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Urban Architecture: A Cognitive Neuroscience Perspective

      1
      The Design Journal
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Place navigation impaired in rats with hippocampal lesions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cortical representation of the local visual environment.

              Medial temporal brain regions such as the hippocampal formation and parahippocampal cortex have been generally implicated in navigation and visual memory. However, the specific function of each of these regions is not yet clear. Here we present evidence that a particular area within human parahippocampal cortex is involved in a critical component of navigation: perceiving the local visual environment. This region, which we name the 'parahippocampal place area' (PPA), responds selectively and automatically in functional magnetic resonance imaging (fMRI) to passively viewed scenes, but only weakly to single objects and not at all to faces. The critical factor for this activation appears to be the presence in the stimulus of information about the layout of local space. The response in the PPA to scenes with spatial layout but no discrete objects (empty rooms) is as strong as the response to complex meaningful scenes containing multiple objects (the same rooms furnished) and over twice as strong as the response to arrays of multiple objects without three-dimensional spatial context (the furniture from these rooms on a blank background). This response is reduced if the surfaces in the scene are rearranged so that they no longer define a coherent space. We propose that the PPA represents places by encoding the geometry of the local environment.
                Bookmark

                Author and article information

                Journal
                The Design Journal
                The Design Journal
                Informa UK Limited
                1460-6925
                1756-3062
                September 06 2019
                November 02 2019
                September 12 2019
                November 02 2019
                : 22
                : 6
                : 853-872
                Affiliations
                [1 ] University College London, London, UK
                Article
                10.1080/14606925.2019.1662666
                639006d7-2287-4e73-baab-96f63a89d4b8
                © 2019
                History

                Comments

                Comment on this article