41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence of Human Papillomavirus Variants and Genetic Diversity in the L1 Gene and Long Control Region of HPV16, HPV31, and HPV58 Found in North-East Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study showed the prevalence of human papillomavirus (HPV) variants as well as nucleotide changes within L1 gene and LCR of the HPV16, HPV31, and HPV58 found in cervical lesions of women from North-East Brazil.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          PROMO: detection of known transcription regulatory elements using species-tailored searches.

          We have developed a set of tools to construct positional weight matrices from known transcription factor binding sites in a species or taxon-specific manner, and to search for matches in DNA sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human papillomavirus genome variants.

            Amongst the human papillomaviruses (HPVs), the genus Alphapapillomavirus contains HPV types that are uniquely pathogenic. They can be classified into species and types based on genetic distances between viral genomes. Current circulating infectious HPVs constitute a set of viral genomes that have evolved with the rapid expansion of the human population. Viral variants were initially identified through restriction enzyme polymorphisms and more recently through sequence determination of viral fragments. Using partial sequence information, the history of variants, and the association of HPV variants with disease will be discussed with the main focus on the recent utilization of full genome sequence information for variant analyses. The use of multiple sequence alignments of complete viral genomes and phylogenetic analyses have begun to define variant lineages and sublineages using empirically defined differences of 1.0-10.0% and 0.5-1.0%, respectively. These studies provide the basis to define the genetics of HPV pathogenesis. © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Papillomavirus infections--a major cause of human cancers.

              The papillomavirus family represents a remarkably heterogeneous group of viruses. At present, 77 distinct genotypes have been identified in humans and partial sequences have been obtained from more than 30 putative novel genotypes. Geographic differences in base composition of individual genotypes are generally small and suggest a low mutation rate and thus an ancient origin of today's prototypes. The relatively small size of the genome permitted an analysis of individual gene functions and of interactions of viral proteins with host cell components. Proliferating cells contain the viral genome in a latent form, large scale viral DNA replication, as well as translation and functional activity of late viral proteins, and viral particle assembly are restricted to differentiating layers of skin and mucosa. In humans papillomavirus infections cause a variety of benign proliferations: warts, epithelial cysts, intraepithelial neoplasias, anogenital, oro-laryngeal and -pharyngeal papillomas, keratoacanthomas and other types of hyperkeratoses. Their involvement in the etiology of some major human cancers is of particular interest: specific types (HPV 16, 18 and several others) have been identified as causative agents of at least 90% of cancers of the cervix and are also linked to more than 50% of other anogenital cancers. These HPV types are considered as 'high risk' infections. Their E6/E7 oncoproteins stimulate cell proliferation by activating cyclins E and A, and interfere with the functions of the cellular proteins RB and p53. The latter interaction appears to be responsible for their mutagenic and aneuploidizing activity as an underlying principle for the progression of these HPV-containing lesions and the role of high risk HPV types as solitary carcinogens. In non-transformed human keratinocytes transcription and function of viral oncoproteins is controlled by intercellular and intracellular signalling cascades, their interruption emerges as a precondition for immortalization and malignant growth. Recently, novel and known HPV types have also been identified in a high percentage of non-melanoma skin cancers (basal and squamous cell carcinomas). Similar to observations in patients with a rare hereditary condition, epidermodysplasia verruciformis, characterized by an extensive verrucosis and development of skin cancer, basal and squamous cell carcinomas develop preferentially in light-exposed sites. This could suggest an interaction between a physical carcinogen (UV-part of the sunlight) and a 'low risk' (non-mutagenic) papillomavirus infection. Reports on the presence of HPV infections in cancers of the oral cavity, the larynx, and the esophagus further emphasize the importance of this virus group as proven and suspected human carcinogens.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                22 February 2015
                : 2015
                : 130828
                Affiliations
                1Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Avenida Professor Moraes Rego S/N, 50670-901 Recife, PE, Brazil
                2Department of Histology and Embryology, Federal University of Pernambuco, Avenida Professor Moraes Rego S/N, 50670-901 Recife, PE, Brazil
                3Molecular Biology Laboratory, Pediatric Oncohematology Center, University of Pernambuco, Avenida Agamenon Magalhaes S/N, 50100-130 Recife, PE, Brazil
                Author notes
                *Antonio Carlos de Freitas: acf_ufpe@ 123456yahoo.com.br

                Academic Editor: Paul K. S. Chan

                Article
                10.1155/2015/130828
                4352477
                639b34d1-7a69-457c-84fa-b1f2035e8144
                Copyright © 2015 Ana Pavla Almeida Diniz Gurgel et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 November 2014
                : 8 January 2015
                Categories
                Research Article

                Comments

                Comment on this article