105
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle : An in vitro and in vivo assessment

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Screening of plant extracts for antioxidant activity: a comparative study on three testing methods.

          Three methods widely employed in the evaluation of antioxidant activity, namely 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method, static headspace gas chromatography (HS-GC) and beta-carotene bleaching test (BCBT), have been compared with regard to their application in the screening of plant extracts. The strengths and limitations of each method have been illustrated by testing a number of extracts, of differing polarity, from plants of the genus Sideritis, and two known antioxidants (butylated hydroxytoluene and rosmarinic acid). The sample polarity was important for the exhibited activity in the BCBT and HS-GC methods but not for the DPPH method. The complex composition of the extracts and partition phenomena affected their activity in each assay. The value of the BCBT method appears to be limited to less polar samples. Although slow, the HS-GC method is preferable for assessing the antioxidant inhibitory properties on the formation of unwanted secondary volatile products. Being rapid, simple and independent of sample polarity, the DPPH method is very convenient for the quick screening of many samples for radical scavenging activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure

            Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trends in the development of radioprotective agents.

              People may be exposed to ionizing radiation during radiotherapy or following exposure to radionuclides in nuclear medicine. Radioprotective agents have been used to reduce morbidity or mortality produced by ionizing irradiation. Early developments of such agents focused on thiol synthetic compounds, such as amifostine. This compound reduced mortality; however, there were difficulties in administering aminothiols that led to adverse effects. Hence, the development of radioprotective agents with lower toxicity and an extended window of protection has attracted much attention. Natural compounds have been evaluated as radioprotectants and they seem to exert their effect through antioxidant and immunostimulant activities. Although recent agents have lower efficacy, they have lower toxicity, more favourable administration routes and improved pharmacokinetics compared to the older thiol compounds.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Landes Bioscience
                1942-0900
                1942-0994
                Jan-Feb 2010
                : 3
                : 1
                : 44-52
                Affiliations
                [1 ]Division of Radiation Biosciences; Institute of Nuclear Medicine and Allied sciences; Brig. S.K Mazumdar Marg, Delhi India
                [2 ]Division of Pharmacology and Toxicology; Defence Research and Development Establishment; Gwalior, India
                Author notes
                Correspondence to: Manju Lata Gupta and Swaran J.S. Flora; Email: drmanjugupta2003@ 123456yahoo.com and sjsflora@ 123456hotmail.com
                Article
                1942-0900-3-1-6
                2835888
                20716927
                63f063c6-2d94-404b-a1ff-8b969774165c
                © 2010 Landes Bioscience
                History
                : 22 September 2009
                : 8 October 2009
                : 19 October 2009
                Categories
                Research Paper

                Molecular medicine
                oxidative stress,piper betle,glutathione,lipid peroxidation,ionizing radiation
                Molecular medicine
                oxidative stress, piper betle, glutathione, lipid peroxidation, ionizing radiation

                Comments

                Comment on this article