12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cranial base is essential for integrated craniofacial development and growth. It develops as a cartilaginous template that is replaced by bone through the process of endochondral ossification. Here, we describe a novel and specific role for the homeoprotein Six2 in the growth and elongation of the cranial base. Six2-null newborn mice display premature fusion of the bones in the cranial base. Chondrocyte differentiation is abnormal in the Six2-null cranial base, with reduced proliferation and increased terminal differentiation. Gain-of-function experiments indicate that Six2 promotes cartilage development and growth in other body areas and appears therefore to control general regulators of chondrocyte differentiation. Our data indicate that the main factors restricting Six2 function to the cranial base are tissue-specific transcription of the gene and compensatory effects of other Six family members. The comparable expression during human embryogenesis and the high protein conservation from mouse to human implicate SIX2 loss-of-function as a potential congenital cause of anterior cranial base defects in humans. Copyright 2010 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          Developmental Biology
          Developmental Biology
          Elsevier BV
          00121606
          August 2010
          August 2010
          : 344
          : 2
          : 720-730
          Article
          10.1016/j.ydbio.2010.05.509
          20515681
          6443d7b4-4dd9-4394-af09-dec3f18f2bef
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article