37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Islet β-Cell Endoplasmic Reticulum Stress Precedes the Onset of Type 1 Diabetes in the Nonobese Diabetic Mouse Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 diabetes is preceded by islet β-cell dysfunction, but the mechanisms leading to β-cell dysfunction have not been rigorously studied. Because immune cell infiltration occurs prior to overt diabetes, we hypothesized that activation of inflammatory cascades and appearance of endoplasmic reticulum (ER) stress in β-cells contributes to insulin secretory defects. Prediabetic nonobese diabetic (NOD) mice and control diabetes-resistant NOD-SCID and CD1 strains were studied for metabolic control and islet function and gene regulation. Prediabetic NOD mice were relatively glucose intolerant and had defective insulin secretion with elevated proinsulin:insulin ratios compared with control strains. Isolated islets from NOD mice displayed age-dependent increases in parameters of ER stress, morphologic alterations in ER structure by electron microscopy, and activation of nuclear factor-κB (NF-κB) target genes. Upon exposure to a mixture of proinflammatory cytokines that mimics the microenvironment of type 1 diabetes, MIN6 β-cells displayed evidence for polyribosomal runoff, a finding consistent with the translational initiation blockade characteristic of ER stress. We conclude that β-cells of prediabetic NOD mice display dysfunction and overt ER stress that may be driven by NF-κB signaling, and strategies that attenuate pathways leading to ER stress may preserve β-cell function in type 1 diabetes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Coping with stress: eIF2 kinases and translational control.

          In response to environmental stresses, a family of protein kinases phosphorylate eIF2 (eukaryotic initiation factor 2) to alleviate cellular injury or alternatively induce apoptosis. Phosphorylation of eIF2 reduces global translation, allowing cells to conserve resources and to initiate a reconfiguration of gene expression to effectively manage stress conditions. Accompanying this general protein synthesis control, eIF2 phosphorylation induces translation of specific mRNAs, such as that encoding the bZIP (basic leucine zipper) transcriptional regulator ATF4 (activating transcription factor 4). ATF4 also enhances the expression of additional transcription factors, ATF3 and CHOP (CCAAT/enhancer-binding protein homologous protein)/GADD153 (growth arrest and DNA-damage-inducible protein), that assist in the regulation of genes involved in metabolism, the redox status of the cells and apoptosis. Reduced translation by eIF2 phosphorylation can also lead to activation of stress-related transcription factors, such as NF-kappaB (nuclear factor kappaB), by lowering the steady-state levels of short-lived regulatory proteins such as IkappaB (inhibitor of NF-kappaB). While many of the genes induced by eIF2 phosphorylation are shared between different environmental stresses, eIF2 kinases function in conjunction with other stress-response pathways, such as those regulated by mitogen-activated protein kinases, to elicit gene expression programmes that are tailored for the specific stress condition. Loss of eIF2 kinase pathways can have important health consequences. Mice devoid of the eIF2 kinase GCN2 [general control non-derepressible-2 or EIF2AK4 (eIF2alpha kinase 4)] show sensitivity to nutritional deficiencies and aberrant eating behaviours, and deletion of PEK [pancreatic eIF2alpha kinase or PERK (RNA-dependent protein kinase-like endoplasmic reticulum kinase) or EIF2AK3] leads to neonatal insulin-dependent diabetes, epiphyseal dysplasia and hepatic and renal complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial.

            In patients with type 1 diabetes, measurement of connecting peptide (C-peptide), cosecreted with insulin from the islets of Langerhans, permits estimation of remaining beta-cell secretion of insulin. In this retrospective analysis to distinguish the incremental benefits of residual beta-cell activity in type 1 diabetes, stimulated (90 min following ingestion of a mixed meal) C-peptide levels at entry in the Diabetes Control and Complications Trial (DCCT) were related to measures of diabetic retinopathy and nephropathy and to incidents of severe hypoglycemia. Based on the analytical sensitivity of the assay (0.03 nmol/l) and study entry criteria, the DCCT subjects were divided into four groups of stimulated C-peptide responses: 40 mg/24 h once and repeated at the next annual visit). There were also differences in severe hypoglycemia across C-peptide levels in both treatment groups. In the intensively treated cohort there were essentially identical prevalences of severe hypoglycemia ( approximately 65% of participants) in the first three groups; however, those subjects with mixed-meal stimulated C-peptide level >0.20 nmol/l for at least baseline and the first annual visit in the DCCT experienced a reduced prevalence of approximately 30%. Therefore, even modest levels of beta-cell activity at entry in the DCCT were associated with reduced incidences of retinopathy and nephropathy. Also, continuing C-peptide (insulin) secretion is important in avoiding hypoglycemia (the major complication of intensive diabetic therapy).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells.

              Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                April 2012
                14 March 2012
                : 61
                : 4
                : 818-827
                Affiliations
                [1] 1Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
                [2] 2The Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
                [3] 3Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
                [4] 4Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
                [5] 5Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
                [6] 6Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana
                [7] 7Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
                Author notes
                Corresponding author: Raghavendra G. Mirmira, rmirmira@ 123456iupui.edu .
                Article
                1293
                10.2337/db11-1293
                3314371
                22442300
                656258b5-ef00-4ebf-b009-d800d79a3d9f
                © 2012 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 15 September 2011
                : 13 December 2011
                Categories
                Islet Studies

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article