43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Farnesoid X receptor is essential for normal glucose homeostasis.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bile acid receptor farnesoid X receptor (FXR; NR1H4) is a central regulator of bile acid and lipid metabolism. We show here that FXR plays a key regulatory role in glucose homeostasis. FXR-null mice developed severe fatty liver and elevated circulating FFAs, which was associated with elevated serum glucose and impaired glucose and insulin tolerance. Their insulin resistance was confirmed by the hyperinsulinemic euglycemic clamp, which showed attenuated inhibition of hepatic glucose production by insulin and reduced peripheral glucose disposal. In FXR-/- skeletal muscle and liver, multiple steps in the insulin signaling pathway were markedly blunted. In skeletal muscle, which does not express FXR, triglyceride and FFA levels were increased, and we propose that their inhibitory effects account for insulin resistance in that tissue. In contrast to the results in FXR-/- mice, bile acid activation of FXR in WT mice repressed expression of gluconeogenic genes and decreased serum glucose. The absence of this repression in both FXR-/- and small heterodimer partner-null (SHP-/-) mice demonstrated that the previously described FXR-SHP nuclear receptor cascade also targets glucose metabolism. Taken together, our results identify a link between lipid and glucose metabolism mediated by the FXR-SHP cascade.

          Related collections

          Author and article information

          Journal
          J Clin Invest
          The Journal of clinical investigation
          American Society for Clinical Investigation
          0021-9738
          0021-9738
          Apr 2006
          : 116
          : 4
          Affiliations
          [1 ] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
          Article
          10.1172/JCI25604
          1409738
          16557297
          658a5d4e-03f5-4190-8a2f-7c7a2ae141aa
          History

          Comments

          Comment on this article