43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using Massive Parallel Sequencing for the Development, Validation, and Application of Population Genetics Markers in the Invasive Bivalve Zebra Mussel ( Dreissena polymorpha)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The zebra mussel ( Dreissena polymorpha, Pallas, 1771) is one of the most invasive species of freshwater bivalves, due to a combination of biological and anthropogenic factors. Once this species has been introduced to a new area, individuals form dense aggregations that are very difficult to remove, leading to many adverse socioeconomic and ecological consequences. In this study, we identified, tested, and validated a new set of polymorphic microsatellite loci (also known as SSRs, Single Sequence Repeats) using a Massive Parallel Sequencing (MPS) platform. After several pruning steps, 93 SSRs could potentially be amplified. Out of these SSRs, 14 were polymorphic, producing a polymorphic yield of 15.05%. These 14 polymorphic microsatellites were fully validated in a first approximation of the genetic population structure of D. polymorpha in the Iberian Peninsula. Based on this polymorphic yield, we propose a criterion for establishing the number of SSRs that require validation in similar species, depending on the final use of the markers. These results could be used to optimize MPS approaches in the development of microsatellites as genetic markers, which would reduce the cost of this process.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Strategies for microsatellite isolation: a review.

          In the last few years microsatellites have become one of the most popular molecular markers used with applications in many different fields. High polymorphism and the relative ease of scoring represent the two major features that make microsatellites of large interest for many genetic studies. The major drawback of microsatellites is that they need to be isolated de novo from species that are being examined for the first time. The aim of the present paper is to review the various methods of microsatellite isolation described in the literature with the purpose of providing useful guidelines in making appropriate choices among the large number of currently available options. In addition, we propose a fast and easy protocol which is a combination of different published methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current trends in microsatellite genotyping.

            Microsatellites have been popular molecular markers ever since their advent in the late eighties. Despite growing competition from new genotyping and sequencing techniques, the use of these versatile and cost-effective markers continues to increase, boosted by successive technical advances. First, methods for multiplexing PCR have considerably improved over the last years, thereby decreasing genotyping costs and increasing throughput. Second, next-generation sequencing technologies allow the identification of large numbers of microsatellite loci at reduced cost in non-model species. As a consequence, more stringent selection of loci is possible, thereby further enhancing multiplex quality and efficiency. However, current practices are lagging behind. By surveying recently published population genetic studies relying on simple sequence repeats, we show that more than half of the studies lack appropriate quality controls and do not make use of multiplex PCR. To make the most of the latest technical developments, we outline the need for a well-established strategy including standardized high-throughput bench protocols and specific bioinformatic tools, from primer design to allele calling. © 2011 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rise of the machines--recommendations for ecologists when using next generation sequencing for microsatellite development.

              Next generation sequencing is revolutionizing molecular ecology by simplifying the development of molecular genetic markers, including microsatellites. Here, we summarize the results of the large-scale development of microsatellites for 54 nonmodel species using next generation sequencing and show that there are clear differences amongst plants, invertebrates and vertebrates for the number and proportion of motif types recovered that are able to be utilized as markers. We highlight that the heterogeneity within each group is very large. Despite this variation, we provide an indication of what number of sequences and consequent proportion of a 454 run are required for the development of 40 designable, unique microsatellite loci for a typical molecular ecological study. Finally, to address the challenges of choosing loci from the vast array of microsatellite loci typically available from partial genome runs (average for this study, 2341 loci), we provide a microsatellite development flowchart as a procedural guide for application once the results of a partial genome run are obtained. © 2011 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                17 March 2015
                2015
                : 10
                : 3
                : e0120732
                Affiliations
                [001]Laboratori d’Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Campus Montilivi, Girona, Spain
                University of Innsbruck, AUSTRIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LP NS CP OV JV. Performed the experiments: LP NS. Analyzed the data: LP OV JV. Contributed reagents/materials/analysis tools: CP JV. Wrote the paper: LP JV.

                Article
                PONE-D-14-43745
                10.1371/journal.pone.0120732
                4364119
                25780924
                65e0f42b-4aff-4c3d-b901-423a61c32f1b
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 10 October 2014
                : 26 January 2015
                Page count
                Figures: 1, Tables: 4, Pages: 14
                Funding
                This research was carried out within the objectives of the research project CGL200909407 of the Spanish MICINN (Ministerio de Ciencia e Innovación), http://www.idi.mineco.gob.es/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article