60
views
0
recommends
+1 Recommend
5 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Sustainability and ecological efficiency of low-carbon power system: A concentrating solar power plant in China

      , , , , ,
      Journal of Environmental Management
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          Environmental Repercussions and the Economic Structure: An Input-Output Approach

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            System boundary selection in life-cycle inventories using hybrid approaches.

            Life-cycle assessment (LCA) is a method for evaluating the environmental impacts of products holistically, including direct and supply chain impacts. The current LCA methodologies and the standards by the International Organization for Standardization (ISO) impose practical difficulties for drawing system boundaries; decisions on inclusion or exclusion of processes in an analysis (the cutoff criteria) are typically not made on a scientific basis. In particular, the requirement of deciding which processes could be excluded from the inventory can be rather difficult to meet because many excluded processes have often never been assessed by the practitioner, and therefore, their negligibility cannot be guaranteed. LCA studies utilizing economic input-output analysis have shown that, in practice, excluded processes can contribute as much to the product system under study as included processes; thus, the subjective determination of the system boundary may lead to invalid results. System boundaries in LCA are discussed herein with particular attention to outlining hybrid approaches as methods for resolving the boundary selection problem in LCA. An input-output model can be used to describe at least a part of a product system, and an ISO-compatible system boundary selection procedure can be designed by applying hybrid input-output-assisted approaches. There are several hybrid input-output analysis-based LCA methods that can be implemented in practice for broadening system boundary and also for ISO compliance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-organization, transformity, and information.

              H Odum (1988)
              Ecosystems and other self-organizing systems develop system designs and mathematics that reinforce energy use, characteristically with alternate pulsing of production and consumption, increasingly recognized as the new paradigm. Insights from the energetics of ecological food chains suggest the need to redefine work, distinguishing kinds of energy with a new quantity, the transformity (energy of one type required per unit of another). Transformities may be used as an energy-scaling factor for the hierarchies of the universe including information. Solar transformities in the biosphere, expressed as solar emjoules per joule, range from one for solar insolation to trillions for categories of shared information. Resource contributions multiplied by their transformities provide a scientifically based value system for human service, environmental mitigation, foreign trade equity, public policy alternatives, and economic vitality.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Environmental Management
                Journal of Environmental Management
                Elsevier BV
                03014797
                July 2021
                July 2021
                : 290
                : 112659
                Article
                10.1016/j.jenvman.2021.112659
                665247e4-df76-4557-b93c-937ba103a5df
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_

                Similar content391

                Cited by3

                Most referenced authors465