Blog
About

13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      A clinical isolate of Escherichia coli co-harbouring mcr-1 and bla NDM-5 in Japan

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.

          A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex. The isolate, Klebsiella pneumoniae 05-506, was shown to possess a metallo-beta-lactamase (MBL) but was negative for previously known MBL genes. Gene libraries and amplification of class 1 integrons revealed three resistance-conferring regions; the first contained bla(CMY-4) flanked by ISEcP1 and blc. The second region of 4.8 kb contained a complex class 1 integron with the gene cassettes arr-2, a new erythromycin esterase gene; ereC; aadA1; and cmlA7. An intact ISCR1 element was shown to be downstream from the qac/sul genes. The third region consisted of a new MBL gene, designated bla(NDM-1), flanked on one side by K. pneumoniae DNA and a truncated IS26 element on its other side. The last two regions lie adjacent to one another, and all three regions are found on a 180-kb region that is easily transferable to recipient strains and that confers resistance to all antibiotics except fluoroquinolones and colistin. NDM-1 shares very little identity with other MBLs, with the most similar MBLs being VIM-1/VIM-2, with which it has only 32.4% identity. As well as possessing unique residues near the active site, NDM-1 also has an additional insert between positions 162 and 166 not present in other MBLs. NDM-1 has a molecular mass of 28 kDa, is monomeric, and can hydrolyze all beta-lactams except aztreonam. Compared to VIM-2, NDM-1 displays tighter binding to most cephalosporins, in particular, cefuroxime, cefotaxime, and cephalothin (cefalotin), and also to the penicillins. NDM-1 does not bind to the carbapenems as tightly as IMP-1 or VIM-2 and turns over the carbapenems at a rate similar to that of VIM-2. In addition to K. pneumoniae 05-506, bla(NDM-1) was found on a 140-kb plasmid in an Escherichia coli strain isolated from the patient's feces, inferring the possibility of in vivo conjugation. The broad resistance carried on these plasmids is a further worrying development for India, which already has high levels of antibiotic resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide.

            The spread of carbapenemase producers in Enterobacteriaceae has now been identified worldwide. Three main carbapenemases have been reported; they belong to three classes of β-lactamases, which are KPC, NDM, and OXA-48. The main reservoirs of KPC are Klebsiella pneumoniae in the USA, Israel, Greece, and Italy, those of NDM are K. pneumoniae and Escherichia coli in the Indian subcontinent, and those of OXA-48 are K. pneumoniae and Escherichia coli in North Africa and Turkey. KPC producers have been mostly identified among nosocomial isolates, whereas NDM and OXA-48 producers are both nosocomial and community-acquired pathogens. Control of their spread is still possible in hospital settings, and relies on the use of rapid diagnostic techniques and the strict implemention of hygiene measures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health

              Background The emergence of carbapenemase producing bacteria, especially New Delhi metallo-β-lactamase (NDM-1) and its variants, worldwide, has raised amajor public health concern. NDM-1 hydrolyzes a wide range of β-lactam antibiotics, including carbapenems, which are the last resort of antibiotics for the treatment of infections caused by resistant strain of bacteria. Main body In this review, we have discussed bla NDM-1variants, its genetic analysis including type of specific mutation, origin of country and spread among several type of bacterial species. Wide members of enterobacteriaceae, most commonly Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and gram-negative non-fermenters Pseudomonas spp. and Acinetobacter baumannii were found to carry these markers. Moreover, at least seventeen variants of bla NDM-type gene differing into one or two residues of amino acids at distinct positions have been reported so far among different species of bacteria from different countries. The genetic and structural studies of these variants are important to understand the mechanism of antibiotic hydrolysis as well as to design new molecules with inhibitory activity against antibiotics. Conclusion This review provides a comprehensive view of structural differences among NDM-1 variants, which are a driving force behind their spread across the globe. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1012-8) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Journal of Medical Microbiology
                Microbiology Society
                0022-2615
                1473-5644
                August 01 2018
                August 01 2018
                : 67
                : 8
                : 1047-1049
                Affiliations
                [1 ] 1​Department of Microbiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
                [2 ] 2​Department of Nursing, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
                [3 ] 3​Clinical Microbiology Laboratory, Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
                [4 ] 4​Division of Infectious Diseases, Department of Medical Subspecialties, National for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
                [5 ] 5​Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38138, USA
                Article
                10.1099/jmm.0.000793
                © 2018

                Comments

                Comment on this article