5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Dwarfing of an Insular Mammal – The Feral Cattle of Amsterdam Island

      research-article
      1 , , 2
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The island rule describes a graded trend in insular populations of vertebrates from gigantism in small species to dwarfism in large species. The dwarfing of large mammals on islands has been observed both in the present fauna and in the fossil record. Elephants, hippopotami, deer, and other species became dwarfed on islands scattered all over the world, from the Mediterranean Sea to Indonesia, from the Eastern to Western Pacific Ocean, from the Caribbean to Canary Islands. The most rapid and well documented cases of island dwarfing known thus far took place over thousands of years. Here, we describe a rapid example of dwarfing of a large mammal - the feral cattle of Amsterdam Island, southern Indian Ocean, which dwarfed to about three quarters of its body size in slightly more than one century. This population provides us with a rare opportunity to assess the rapidity of demographic, life history, and morphological responses of large mammals to a very isolated and ecologically simple, insular environment.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Coupled dynamics of body mass and population growth in response to environmental change.

          Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding Inbreeding Depression, Purging, and Genetic Rescue.

            Inbreeding depression, the reduction of fitness caused by inbreeding, is a nearly universal phenomenon that depends on past mutation, selection, and genetic drift. Recent estimates suggest that its impact on individual fitness is even greater than previously thought. Genomic information is contributing to its detection and can enlighten important aspects of its genetic architecture. In natural populations, purging and genetic rescue mitigate fitness decline during inbreeding periods, and might be critical to population survival, thus, both mechanisms should be considered when assessing extinction risks. However, deliberate purging and genetic rescue involve considerable risk in the short and medium term, so that neither appears to be a panacea against high inbreeding depression.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Body size evolution in insular vertebrates: generality of the island rule

                Bookmark

                Author and article information

                Contributors
                roberto.rozzi@mfn-berlin.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 August 2017
                18 August 2017
                2017
                : 7
                : 8820
                Affiliations
                [1 ]ISNI 0000 0001 2293 9957, GRID grid.422371.1, Museum für Naturkunde, , Leibniz-Institut für Evolutions- und Biodiversitätsforschung, ; 10115 Berlin, Germany
                [2 ]State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210 USA
                Article
                8820
                10.1038/s41598-017-08820-2
                5562861
                28821782
                6738a6aa-19ac-4eb5-8e1d-3437863870cc
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 March 2017
                : 19 July 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article