6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preliminary study of nanonized lamotrigine containing products for nasal powder formulation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nasal delivery of drugs offers a great alternative route to avoid adverse events and to increase patient compliance due to its advantageous properties. Besides nasal application, topical, systemic and central effects are also available. Nasal powders (NPs) have better adhesion due to the additive polymers that may be, eg, gelling or good wettability agents; thus, their bioavailability is better compared to the liquid formulations. Using nanoparticles, innovative and more efficient products can be achieved, which may lead to the improvement of different therapies. The aim of this study was to produce NP formulations containing lamotrigine (LAM) as interactive physical mixtures and nanosized LAM-based formulations. After risk assessment of the preliminary tests, the micrometric properties (particle size and morphology) and the structural properties (differential scanning calorimetry [DSC], X-ray powder diffraction [XRPD]) were investigated; thereafter, physicochemical properties (solubility, polarity) and in vitro dissolution and diffusion profiles were also examined. These product samples showed an appropriate particle size ranging 10–25 µm, while the particle size of LAM in the products was between 120 and 230 nm and the dissolved amount of drug was >60% after 5 minutes in these cases.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmaceutical quality by design: product and process development, understanding, and control.

           X. Yu (2008)
          The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery.

             S H Gohla,  H. Müller,  C Keck (2011)
            Drug nanocrystals are the latest, broadly introduced nanoparticulate carrier to the pharmaceutical market from the year 2000 onwards. The special features of nanocrystals for the delivery of poorly soluble drugs are briefly reviewed (saturation solubility, dissolution velocity, adhesiveness). The industrially relevant bottom up (precipitation) and top down production technologies (pearl milling, high pressure homogenization, combination technologies) are presented. As nanotoxicological aspects, the effect of size, degradability versus biopersistency and intracellular uptake are discussed, classifying the nanocrystals in the low/non-risk group. Intracellular uptake plays a minor or no role for dermal and oral nanocrystals, but it plays a key role for intravenously injected nanocrystals (e.g. nevirapine, paclitaxel, itraconazole). Uptake by the macrophages of the mononuclear phagocytic system (MPS, liver spleen) can modify/optimize blood profiles via prolonged release from the MPS (itraconazole), but also target toxicity by too high organ concentrations and thus cause nanotoxicity. The balance in the competitive intracellular uptake by MPS and the target cells (e.g. blood-brain barrier) decides about therapeutic efficiency. The concept of "differential protein adsorption" to modulate this balance is shown for its applicability to nanocrystals for intracellular delivery to the cells of the blood-brain barrier (atovaquone). Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              Overview of milling techniques for improving the solubility of poorly water-soluble drugs

                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                23 August 2017
                : 11
                : 2453-2466
                Affiliations
                Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
                Author notes
                Correspondence: Rita Ambrus, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u 6, Szeged H-6720, Hungary, Tel +36 62 545 575, Fax +36 62 545 571, Email arita@ 123456pharm.u-szeged.hu
                Article
                dddt-11-2453
                10.2147/DDDT.S138559
                5574602
                © 2017 Gieszinger et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article