17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional Regulation of 15-Lipoxygenase Expression by Histone H3 Lysine 4 Methylation/Demethylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          15-Lipoxygenase-1 (15-LOX-1) oxidizes polyunsaturated fatty acids to a rich spectrum of biologically active metabolites and is implicated in physiological membrane remodelling, inflammation and apoptosis. Its deregulation is involved in the pathogenesis of diverse cancer and immune diseases. Recent experimental evidence reveals that dynamic histone methylation/demethylation mediated by histone methyltransferases and demethylases plays a critical role in regulation of chromatin remodelling and gene expression. In the present study, we compared the histone 3 lysine 4 (H3-K4) methylation status of the 15-LOX-1 promoter region of the two Hodgkin lymphoma (HL) cell lines L1236 and L428 with abundant and undetectable 15-LOX-1 expression, respectively. We identified a potential role of H3-K4 methylation in positive regulation of 15-LOX-1 transcription. Furthermore, we found that histone methyltransferase SMYD3 inhibition reduced 15-LOX-1 expression by decreasing promoter activity in L1236 cells. SMYD3 knock down in these cells abolished di−/trimethylation of H3-K4, attenuated the occupancy by the transactivator STAT6, and led to diminished histone H3 acetylation at the 15-LOX-1 promoter. In contrast, inhibition of SMCX, a JmjC-domain-containing H3-K4 tri-demethylase, upregulated 15-LOX-1 expression through induction of H3-K4 trimethylation, histone acetylation and STAT6 recruitment at the 15-LOX-1 promoter in L428 cells. In addition, we observed strong SMYD3 expression in the prostate cancer cell line LNCaP and its inhibition led to decreased 15-LOX-1 expression. Taken together, our data suggest that regulation of histone methylation/demethylation at the 15-LOX-1 promoter is important in 15-LOX-1 expression.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells.

          Colorectal and hepatocellular carcinomas are some of the leading causes of cancer deaths worldwide, but the mechanisms that underly these malignancies are not fully understood. Here we report the identification of SMYD3, a gene that is over-expressed in the majority of colorectal carcinomas and hepatocellular carcinomas. Introduction of SMYD3 into NIH3T3 cells enhanced cell growth, whereas genetic knockdown with small-interfering RNAs (siRNAs) in cancer cells resulted in significant growth suppression. SMYD3 formed a complex with RNA polymerase II through an interaction with the RNA helicase HELZ and transactivated a set of genes that included oncogenes, homeobox genes and genes associated with cell-cycle regulation. SMYD3 bound to a motif, 5'-CCCTCC-3', present in the promoter region of downstream genes such as Nkx2.8. The SET domain of SMYD3 showed histone H3-lysine 4 (H3-K4)-specific methyltransferase activity, which was enhanced in the presence of the heat-shock protein HSP90A. Our findings suggest that SMYD3 has histone methyltransferase activity and plays an important role in transcriptional regulation as a member of an RNA polymerase complex. Furthermore, activation of SMYD3 may be a key factor in human carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenetics and cardiovascular disease.

            Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only explain a small part of the variability in CVD risk, which is a major obstacle for its prevention and treatment. A more thorough understanding of the factors that contribute to CVD is, therefore, needed to develop more efficacious and cost-effective therapy. Application of the 'omics' technologies will hopefully make these advances a reality. Epigenomics has emerged as one of the most promising areas that will address some of the gaps in our current knowledge of the interaction between nature and nurture in the development of CVD. Epigenetic mechanisms include DNA methylation, histone modification, and microRNA alterations, which collectively enable the cell to respond quickly to environmental changes. A number of CVD risk factors, such as nutrition, smoking, pollution, stress, and the circadian rhythm, have been associated with modification of epigenetic marks. Further examination of these mechanisms may lead to earlier prevention and novel therapy for CVD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation.

              Gene transcription is critically influenced by chromatin structure and the modification status of histone tails. Methylation of lysine residues in histone tails is dynamically regulated by the opposing activities of histone methyltransferases and histone demethylases. Here we show that JARID1C/SMCX, a JmjC-domain-containing protein implicated in X-linked mental retardation and epilepsy, possesses H3K4 tri-demethylase activity and functions as a transcriptional repressor. An SMCX complex isolated from HeLa cells contains additional chromatin modifiers (the histone deacetylases HDAC1 and HDAC2, and the histone H3K9 methyltransferase G9a) and the transcriptional repressor REST, suggesting a direct role for SMCX in chromatin dynamics and REST-mediated repression. Chromatin immunoprecipitation reveals that SMCX and REST co-occupy the neuron-restrictive silencing elements in the promoters of a subset of REST target genes. RNA-interference-mediated depletion of SMCX derepresses several of these targets and simultaneously increases H3K4 trimethylation at the sodium channel type 2A (SCN2A) and synapsin I (SYN1) promoters. We propose that loss of SMCX activity impairs REST-mediated neuronal gene regulation, thereby contributing to SMCX-associated X-linked mental retardation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                28 December 2012
                : 7
                : 12
                : e52703
                Affiliations
                [1 ]Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
                [2 ]Department of Urology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
                Texas A&M University, United States of America
                Author notes

                Competing Interests: The study was partially financed by an unconditional support for basic research by Biolipox AB. The company was closed in 2007. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: CL. Performed the experiments: CL HH FS YF ZX. Analyzed the data: DX HC MB CL. Contributed reagents/materials/analysis tools: FY. Wrote the paper: CL JS.

                Article
                PONE-D-12-21105
                10.1371/journal.pone.0052703
                3532411
                23285160
                67ab1950-554c-4694-85b5-21758e773232
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 July 2012
                : 19 November 2012
                Page count
                Pages: 9
                Funding
                The study was supported by grants from the Swedish Cancer Society, Stockholm County Council, Karolinska Institutet, an unrestricted grant from Biolipox AB, National Natural Science Foundationg of China (30901497); the Shandong Province Natural Science Foundation (Y2003C08); Promotive research fund for excellent young and middle-aged scientists of Shandong Province (BS2010YY027); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Lipids
                Fatty Acids
                Lipid Metabolism
                Computational Biology
                Molecular Genetics
                Gene Regulation
                Gene Expression
                Genetics
                Molecular Genetics
                Gene Regulation
                Gene Expression
                Molecular Cell Biology
                Gene Expression
                DNA transcription
                Histone Modification
                Chromatin

                Uncategorized
                Uncategorized

                Comments

                Comment on this article