Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Full-sky photon simulation of clusters and active galactic nuclei in the soft X-rays for eROSITA

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) mission will measure the position and properties of about 100,000 clusters of galaxies and 3 million active galactic nuclei over the full sky. To study the statistical properties of this ongoing survey, it is key to estimate the selection function accurately. We create a set of full sky light-cones using the MultiDark and UNIT dark matter only N-body simulations. We present a novel method to predict the X-ray emission of galaxy clusters. Given a set of dark matter halo properties (mass, redshift, ellipticity, offset parameter), we construct an X-ray emissivity profile and image for each halo in the light-cone. We follow the eROSITA scanning strategy to produce a list of X-ray photons on the full sky. We predict scaling relations for the model clusters, which are in good agreement with the literature. The predicted number density of clusters as a function of flux also agrees with previous measurements. Finally, we obtain a scatter of 0.21 (0.07, 0.25) for the X-ray luminosity -- mass (temperature -- mass, luminosity -- temperature) model scaling relations. We provide catalogues with the model photons emitted by clusters and active galactic nuclei. These catalogues will aid the eROSITA end to end simulation flow analysis and in particular the source detection process and cataloguing methods.

          Related collections

          Author and article information

          Journal
          19 August 2020
          Article
          2008.08404
          68483ae2-060a-4ca2-9670-5fa0d58d8f98

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          15 pages, 11 figures, submitted
          astro-ph.CO

          Cosmology & Extragalactic astrophysics
          Cosmology & Extragalactic astrophysics

          Comments

          Comment on this article