25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-373-3p Targets DKK1 to Promote EMT-Induced Metastasis via the Wnt/ β-Catenin Pathway in Tongue Squamous Cell Carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) regulate gene expression and at the same time mediate tumorigenesis. miR-373-3p has diverse effects in tumors, but its role in tongue squamous cell carcinoma (TSCC) remains unknown. The purpose of this study is to determine the function of miR-373-3p in the progression of TSCC. Our results brought to light that miR-373-3p is markedly upregulated in clinical TSCC tissues compared with paired adjacent normal tissues and has significant correlation with a more aggressive TSCC phenotype in patients. Gain-of-function and loss-of-function studies revealed that ectopic miR-373-3p overexpression promoted the metastasis of TSCC cells. Notably, Wnt/ β-catenin signaling was hyperactivated in TSCC cells overexpressing miR-373-3p, and this pathway was responsible for the epithelial-mesenchymal transition (EMT) induced by miR-373-3p. Furthermore, miR-373-3p directly targeted and suppressed Dickkopf-1 (DKK1), a negative regulator of the Wnt/ β-catenin signaling cascade. These results demonstrate that, by directly targeting DKK1, miR-373-3p constitutively activated Wnt/ β-catenin signaling, thus promoting the EMT-induced metastasis of TSCC. Taken together, our findings reveal a new regulatory mechanism for miR-373-3p and suggest that miR-373-3p might be a potential target in TSCC therapy.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks

          Epithelial-to-mesenchymal transition (EMT) is a key step in development, wound healing, and cancer development. It involves cooperation of signaling pathways, such as transformation growth factor-β (TGF-β), Sonic Hedgehog (SHH), and WNT pathways. These signaling pathways crosstalk to each other and converge to key transcription factors (e.g., SNAIL1) to initialize and maintain the process of EMT. The functional roles of multi-signaling pathway crosstalks in EMT are sophisticated and, thus, remain to be explored. In this review, we focused on three major signal transduction pathways that promote or regulate EMT in carcinoma. We discussed the network structures, and provided a brief overview of the current therapy strategies and drug development targeted to these three signal transduction pathways. Finally, we highlighted systems biology approaches that can accelerate the process of deconstructing complex networks and drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor.

            We aim to examine miR-21 expression in tongue squamous cell carcinomas (TSCC) and correlate it with patient clinical status, and to investigate its contribution to TSCC cell growth, apoptosis, and tumorigenesis. MicroRNA profiling was done in 10 cases of TSCC with microarray. MiR-21 overexpression was quantitated with quantitative reverse transcription-PCR in 103 patients, and correlated to the pathoclinical status of the patients. Immunohistochemistry was used to examine the expression of TPM1 and PTEN, and terminal deoxynucleotidyl transferase-mediated dUTP labeling to evaluate apoptosis. Moreover, miR-21 antisense oligonucleotide (ASO) was transfected in SCC-15 and CAL27 cell lines, and tumor cell growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, adherent colony formation, and soft agar assay, whereas apoptosis was determined by Annexin V assay, cytochrome c release, and caspase 3 assay. Tumorigenesis was evaluated by xenografting SCC-15 cells in nude mice. MiR-21 is overexpressed in TSCC relative to adjacent normal tissues. The level of miR-21 is reversely correlated with TPM1 and PTEN expression and apoptosis of cancer cells. Multivariate analysis showed that miR-21 expression is an independent prognostic factor indicating poor survival. Inhibiting miR-21 with ASO in TSCC cell lines reduces survival and anchorage-independent growth, and induces apoptosis in TSCC cell lines. Simultaneous silencing of TPM1 with siRNA only partially recapitulates the effect of miR-21 ASO. Furthermore, repeated injection of miR-21 ASO suppresses tumor formation in nude mice by reducing cell proliferation and inducing apoptosis. miR-21 is an independent prognostic indicator for TSCC, and may play a role in TSCC development by inhibiting cancer cell apoptosis partly via TPM1 silencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer.

              Wnt glycoproteins regulate homeostasis and development by binding to membrane Frizzled-LRP5/6 receptor complexes. Wnt signaling includes a canonical pathway involving cytosolic beta-catenin stabilization, nuclear translocation and gene regulation, acting as a co-activator of T-cell factor (TCF) proteins, and noncanonical pathways that activate Rho, Rac, JNK and PKC, or modulate Ca(2+) levels. DICKKOPF-1 (DKK-1) encodes a secreted Wnt antagonist that binds to LRP5/6 and induces its endocytosis, leading to inhibition of the canonical pathway. We show that activation of canonical signaling by Wnt1 or ectopic expression of active beta-catenin, TCF4 or LRP6 mutants induces transcription of the human DKK-1 gene. Multiple beta-catenin/TCF4 sites in the DKK-1 gene promoter contribute to this activation. In contrast, Wnt5a, which signals through noncanonical pathways, does not activate DKK-1. Northern and Western blot studies show that activation of the Wnt/beta-catenin pathway by treatment with lithium or Wnt3a-conditioned medium, or by stable expression of either Wnt1 or beta-catenin, increases DKK-1 RNA and protein, thus initiating a negative feedback loop. However, we found that DKK-1 expression decreases in human colon tumors, which suggests that DKK-1 acts as a tumor suppressor gene in this neoplasia. Our data indicate that the Wnt/beta-catenin pathway is downregulated by the induction of DKK-1 expression, a mechanism that is lost in colon cancer.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2017
                27 February 2017
                : 2017
                : 6010926
                Affiliations
                1Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
                2Department of Stomatology, Shenzhen People's Hospital, Second Clinical Medical School of Jinan University, Shenzhen, Guangdong 518020, China
                3Department of Stomatology, Pingshan New District People's Hospital of Shenzhen, Shenzhen, Guangdong 518118, China
                4Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
                Author notes

                Academic Editor: Stephen H. Safe

                Author information
                http://orcid.org/0000-0002-1128-2555
                http://orcid.org/0000-0003-2699-0543
                Article
                10.1155/2017/6010926
                5350393
                28337453
                684a7204-c074-4624-af0c-6e3316c2f51a
                Copyright © 2017 Junquan Weng et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 September 2016
                : 1 February 2017
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81572660
                Funded by: Sun Yat-sen University Clinical Research 5010 Program
                Award ID: 2015018
                Funded by: Guangdong Province Science and Technology Planning Project
                Award ID: 2013B021800059
                Funded by: Guangdong Province Nature Science Foundation
                Award ID: 2015A030313034
                Categories
                Research Article

                Comments

                Comment on this article