20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Contrary to conventional knowledge, LCA of PZT vs. KNN indicates the presence of niobium in KNN constitutes far greater impact across all the 16 categories considered in comparison with PZT. The increased environmental impact of KNN occurs in the early stages of the LCA due to raw material extraction and processing.

          Abstract

          The increasing awareness of the environmental and health threats of lead as well as environmental legislation, both in the EU and around the world targeted at decreasing the use of hazardous substances in electrical appliances and products has reinvigorated the race to develop lead-free alternatives to lead zirconate titanate (PZT), which presently dominates the market for piezoelectric materials. Emphasis has been placed on one of the most likely piezoelectric materials, potassium sodium niobate (KNN), as a lead-free replacement for PZT. KNN has been speculated to have better environmental credentials and is considered as a “greener” replacement to PZT. However, a comparative environmental impact assessment of the life cycle phases of KNN versus PZT piezoelectric materials has not been carried out. Such a life cycle assessment is crucial before any valid claims of “greenness” or environmental viability of one material over the other can be made and is the focus of this paper. Against this backdrop, a methodologically robust life cycle supply chain assessment based on integrated hybrid life cycle framework is undertaken within the context of the two piezoelectric materials. Results show that the presence of niobium in KNN constitutes far greater impact across all the 16 categories considered in comparison with PZT. The increased environmental impact of KNN occurs in the early stages of the LCA due to raw material extraction and processing. As a result, the environmental damage has already occurred before its use in piezoelectric applications during which it doesn't constitute any threat. As such, the use of the term “environmentally friendly” for the description of KNN should be avoided. Cost-benefit analysis of substituting PZT with KNN also indicates that the initial cost of conversion to KNN is greater, especially for energy usage during production. This environmental assessment has allowed us to define and address environmental health and safety as well as sustainability issues that are essential for future development of these materials. Overall, this work demonstrates insightful findings that can be garnered through the application of life cycle assessment and supply chain management to a strategic engineering question which allows industries and policy makers to make informed decisions regarding the environmental consequences of substitute materials, designs, fabrication processes and usage.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Lead-free piezoceramics.

          Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N(-1)), and texturing the material leads to a peak d33 of 416 pC N(-1). The textured material also exhibits temperature-independent field-induced strain characteristics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Perspective on the Development of Lead-free Piezoceramics

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Toxicity of organometal halide perovskite solar cells.

                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2016
                2016
                : 9
                : 11
                : 3495-3520
                Affiliations
                [1 ]Centre for Energy
                [2 ]Environment and Sustainability
                [3 ]University of Sheffield
                [4 ]Sheffield
                [5 ]UK
                [6 ]Departments of Materials Science and Engineering
                [7 ]Kent Business School
                [8 ]University of Kent
                [9 ]Canterbury
                [10 ]School of Civil and Building Engineering
                [11 ]Loughborough University
                [12 ]Loughborough
                [13 ]Logistics and Supply Chain Management Research Centre
                Article
                10.1039/C6EE02429G
                684c64cc-d73b-4ae1-9646-af01ef8d8fd4
                © 2016
                History

                Comments

                Comment on this article