25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Updates on Acetaminophen Hepatotoxicity: The Role of Nrf2 in Hepatoprotection

      research-article
      ,
      Toxicological Research
      The Korean Society of Toxicology
      Acetaminophen, Hepatotoxicity, Nrf2, Natural product

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetaminophen (APAP) known as paracetamol is the main ingredient in Tylenol, which has analgesic and anti-pyretic properties. Inappropriate use of APAP causes major morbidity and mortality secondary to hepatic failure. Overdose of APAP depletes the hepatic glutathione (GSH) rapidly, and the metabolic intermediate leads to hepatocellular death. This article reviews the mechanisms of hepatotoxicity and provides an overview of current research studies. Pharmacokinetics including metabolism (activation and detoxification), subsequent transport (efflux)-facilitating excretion, and some other aspects related to toxicity are discussed. Nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated gene battery plays a critical role in the multiple steps associated with the mitigation of APAP toxicity. The role of Nrf2 as a protective target is described, and potential natural products inhibiting APAP toxicity are outlined. This review provides an update on the mechanism of APAP toxicity and highlights the beneficial role of Nrf2 and specific natural products in hepatoprotection.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity.

          Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acetaminophen hepatotoxicity.

            Acetaminophen is a commonly used antipyretic and analgesic agent. It is safe when taken at therapeutic doses; however, overdose can lead to serious and even fatal hepatotoxicity. The initial metabolic and biochemical events leading to toxicity have been well described, but the precise mechanism of cell injury and death is unknown. Prompt recognition of overdose, aggressive management, and administration of N-acetylcysteine can minimize hepatotoxicity and prevent liver failure and death. Liver transplantation can be lifesaving for those who develop acute liver failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes.

              Nrf2, which belongs to the basic leucine zipper (bZip) transcription factor family, has been implicated as a key molecule involved in antioxidant-responsive element (ARE)-mediated gene expression. In order to examine the role of Nrf2 in protection against xenobiotic toxicity, the sensitivity of nrf2 knockout mice to acetaminophen (N-acetyl-4-aminophenol (APAP)) was analyzed. The saturation of detoxification pathways after high levels of exposure to APAP is known to induce hepatotoxicity. Two factors important in its detoxification are UDP-glucuronosyltransferase (UDP-GT), an ARE-regulated phase-II drug-metabolizing enzyme, and glutathione (GSH), an antioxidant molecule whose synthesis depends on ARE-regulated gamma-glutamylcysteine synthetase (gammaGCS). Two- to 4-month-old male mice were orally administered a single dose of APAP at 0, 150, 300, or 600 mg/kg. Doses of 300 mg/kg APAP or greater caused death in the homozygous knockout mice only, and those that survived showed a greater severity in hepatic damage than the wild-type mice, as demonstrated by increased plasma alanine aminotransferase activity, decreased hepatic non-protein sulfhydryl (NPSH) content, and centrilobular hepatocellular necrosis. The high sensitivity of Nrf2-deficient mice was confirmed from observations made at 0, 2, 8, and 24 h after dosing with 300 mg/kg APAP; increased anti-APAP immunoreactivity was also noted in their livers at 2 h. Untreated homozygous knockout mice showed both a lower UDP-GT activity and NPSH content, which corresponded to decreased mRNA levels of UDP-GT (Ugt1a6) and the heavy chain of gammaGCS, respectively. These results show that Nrf2 plays a protective role against APAP hepatotoxicity by regulating both drug metabolizing enzymes and antioxidant genes through the ARE.
                Bookmark

                Author and article information

                Journal
                Toxicol Res
                Toxicol Res
                ksot
                Toxicological Research
                The Korean Society of Toxicology
                1976-8257
                2234-2753
                September 2013
                : 29
                : 3
                : 165-172
                Affiliations
                Department of Pharmacology, College of Oriental Medicine, Dongguk University, Kyungju, Korea
                Author notes
                Correspondence to: Min Kyung Cho, Department of Pharmacology, College of Oriental Medicine, Dongguk University, 707, Sukjangdong, Kyungju 780-714, Korea E-mail: mkcho@ 123456dongguk.ac.kr
                Article
                toxicr-29-165
                10.5487/TR.2013.29.3.165
                3877995
                24386516
                68556c20-5a9b-4773-9a54-ec8fa98fa12b
                Copyright ©2013, The Korean Society of Toxicology

                This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 September 2013
                : 25 September 2013
                : 26 September 2013
                Categories
                Articles

                acetaminophen,hepatotoxicity,nrf2,natural product
                acetaminophen, hepatotoxicity, nrf2, natural product

                Comments

                Comment on this article