2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effects of strain and estrous cycle on heroin- and sugar-maintained responding in female rats

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4025869e116">Heroin intake decreases during the proestrus phase of the estrous cycle in female, Long-Evans rats. The purpose of this study was to (1) determine if proestrus-associated decreases in heroin intake extend across rat strains and (2) determine if proestrus-associated decreases in responding extend to a nondrug reinforcer. Female rats were implanted with intravenous catheters and trained to self-administer heroin. Estrous cycle was tracked daily for the duration of the study. During testing, Lewis, Sprague Dawley, and Long-Evans rats self-administered low (0.0025 mg/kg) and high (0.0075 mg /kg) doses of heroin and then self-administered sugar on fixed ratio (FR1) schedules of reinforcement. Heroin intake decreased significantly during proestrus in all three rat strains under at least one dose condition; however, sugar intake did not decrease during proestrus in any strain. These data suggest that responding maintained by heroin, but not a nondrug reinforcer, significantly decreases during proestrus in female rats and that these effects are consistent across rat strain. </p>

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Determination of the estrous cycle phases of rats: some helpful considerations

          The short length of the estrous cycle of rats makes them ideal for investigation of changes occurring during the reproductive cycle. The estrous cycle lasts four days and is characterized as: proestrus, estrus, metestrus and diestrus, which may be determined according to the cell types observed in the vaginal smear. Since the collection of vaginal secretion and the use of stained material generally takes some time, the aim of the present work was to provide researchers with some helpful considerations about the determination of the rat estrous cycle phases in a fast and practical way. Vaginal secretion of thirty female rats was collected every morning during a month and unstained native material was observed using the microscope without the aid of the condenser lens. Using the 10 x objective lens, it was easier to analyze the proportion among the three cellular types, which are present in the vaginal smear. Using the 40 x objective lens, it is easier to recognize each one of these cellular types. The collection of vaginal lavage from the animals, the observation of the material, in the microscope, and the determination of the estrous cycle phase of all the thirty female rats took 15-20 minutes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies.

            While an evaluation of the estrous cycle in laboratory rodents can be a useful measure of the integrity of the hypothalamic-pituitary-ovarian reproductive axis, it can also serve as a way of insuring that animals exhibiting abnormal cycling patterns are disincluded from a study prior to exposure to a test compound. Assessment of vaginal cytology in regularly cycling animals also provides a means to establish a comparable endocrine milieu for animals at necropsy. The procedure for obtaining a vaginal smear is relatively non-invasive and is one to which animals can become readily accustomed. It requires few supplies, and with some experience the assessments can be easily performed in fresh, unstained smears, or in fixed, stained ones. When incorporated as an adjunct to other endpoint measures, a determination of a female's cycling status can contribute important information about the nature of a toxicant insult to the reproductive system. In doing so, it can help to integrate the data into a more comprehensive mechanistic portrait of the effect, and in terms of risk assessment, may provide some indication of a toxicant's impact on human reproductive physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats.

              Human interaction and physical environmental factors are part of the stimuli presented to laboratory animals everyday, influencing their behaviour and physiology and contributing to their welfare. Certain environmental conditions and routine procedures in the animal facility might induce stress responses and when the animal is unable to maintain its homeostasis in the presence of a particular stressor, the animal's wellbeing is threatened. This review article summarizes several published studies on the impact of environmental factors such as light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. The behaviour and physiological responses of laboratory rats to different environmental housing conditions and routine procedures are reviewed. Recommendations on the welfare of laboratory rats and refinements in experimental design are discussed and how these can influence and improve the quality of scientific data.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Behavioural Brain Research
                Behavioural Brain Research
                Elsevier BV
                01664328
                July 2021
                July 2021
                : 409
                : 113329
                Article
                10.1016/j.bbr.2021.113329
                8137667
                33933523
                68abdc80-e788-428a-85b5-790b700dfea1
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article