Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Phage Display-Derived Anti-Abrin Antibodies Confer Post-Exposure Protection against Abrin Intoxication

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abrin toxin is a type 2 ribosome inactivating glycoprotein isolated from the seeds of Abrus precatorius (jequirity pea). Owing to its high toxicity, relative ease of purification and accessibility, it is considered a biological threat agent. To date, there is no effective post-exposure treatment for abrin poisoning and passive immunization remains the most effective therapy. However, the effectiveness of anti-abrin monoclonal antibodies for post-exposure therapy following abrin intoxication has not been demonstrated. The aim of this study was to isolate high affinity anti-abrin antibodies that possess potent toxin-neutralization capabilities. An immune scFv phage-display library was constructed from an abrin-immunized rabbit and a panel of antibodies (six directed against the A subunit of abrin and four against the B subunit) was isolated and expressed as scFv-Fc antibodies. By pair-wise analysis, we found that these antibodies target five distinct epitopes on the surface of abrin and that antibodies against all these sites can bind the toxin simultaneously. Several of these antibodies (namely, RB9, RB10, RB28 and RB30) conferred high protection against pulmonary intoxication of mice, when administered six hours post exposure to a lethal dose of abrin. The data presented in this study demonstrate for the first time the efficacy of monoclonal antibodies in treatment of mice after pulmonary intoxication with abrin and promote the use of these antibodies, one or several, for post-exposure treatment of abrin intoxication.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins.

          Ricin is a potent cytotoxic protein derived from the higher plant Ricinus communis that inactivates eukaryotic ribosomes. In this paper we have studied the mechanism of action of ricin A-chain on rat liver ribosomes in vitro. Our findings indicate that the toxin inactivates the ribosomes by modifying both or either of two nucleoside residues, G4323 and A4324, in 28 S rRNA. These nucleotides are located close to the alpha-sarcin cleavage site and become resistant to all ribonucleases tested. The examination of the lability of phosphodiester bonds of these nucleotides to both mild alkaline digestion and aniline treatment at acidic pH suggests that the base of A4324 is removed by the toxin. This unique activity of ricin A-chain was also observed when naked 28 S rRNA is used as a substrate, indicating that the toxin directly acts on the RNA. Similar activity on 28 S rRNA is also exhibited by abrin and modeccin, ricin-related toxins, suggesting a general mechanistic pathway for ribosome inactivation by lectin toxins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ricin poisoning: a comprehensive review.

            The recent discoveries of ricin, a deadly biologic toxin, at a South Carolina postal facility, a White House mail facility, and a US senator's office has raised concerns among public health officials, physicians, and citizens. Ricin is one of the most potent and lethal substances known, particularly when inhaled. The ease with which the native plant (Ricinus communis) can be obtained and the toxin extracted makes ricin an attractive weapon. To summarize the literature on ricin poisoning and provide recommendations based on our best professional judgment for clinicians and public health officials that are faced with deliberate release of ricin into the environment. LITERATURE ACQUISITION: Using PubMed, we searched MEDLINE and OLDMEDLINE databases (January 1950-August 2005). The Chemical and Biological Information Analysis Center database was searched for historical and military literature related to ricin toxicity. Book chapters, unpublished reports, monographs, relevant news reports, and Web material were also reviewed to find nonindexed articles. Most literature on ricin poisoning involves castor bean ingestion and experimental animal research. Aerosol release of ricin into the environment or adulteration of food and beverages are pathways to exposure likely to be exploited. Symptoms after ingestion (onset within 12 hours) are nonspecific and may include nausea, vomiting, diarrhea, and abdominal pain and may progress to hypotension, liver failure, renal dysfunction, and death due to multiorgan failure or cardiovascular collapse. Inhalation (onset of symptoms is likely within 8 hours) of ricin is expected to produce cough, dyspnea, arthralgias, and fever and may progress to respiratory distress and death, with few other organ system manifestations. Biological analytic methods for detecting ricin exposure are undergoing investigation and may soon be available through reference laboratories. Testing of environmental samples is available through federal reference laboratories. Currently, no antidote, vaccine, or other specific effective therapy is available for ricin poisoning or prevention. Prompt treatment with supportive care is necessary to limit morbidity and mortality. Health care workers and public health officials should consider ricin poisoning in patients with gastrointestinal or respiratory tract illness in the setting a credible threat. Poison control centers and public health authorities should be notified of any known illness associated with ricin exposure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging 26S proteasome activity and inhibition in living mice.

              The ubiquitin-proteasome pathway is the central mediator of regulated proteolysis in cells, and defects in this pathway are associated with cancer and neurodegenerative diseases. To assess 26S proteasome function in living animals, we developed a ubiquitin-luciferase reporter for bioluminescence imaging. The reporter was degraded rapidly under steady-state conditions and stabilized in a dose- and time-dependent manner in response to proteasome inhibitors. Using bioluminescence imaging after one dose of the chemo-therapeutic proteasome inhibitor bortezomib (PS-341), proteasome function in tumor xenografts was blocked within 30 min and returned to nearly baseline by 46 h. After a 2-week regimen of bortezomib, however, imaging of target tumors showed significantly enhanced proteasome inhibition that no longer returned to baseline. The ubiquitin-luciferase reporter enables repetitive tissue-specific analysis of 26S proteasome activity in vivo and should facilitate development and validation of proteasome inhibitors in mouse models, as well as investigations of the ubiquitin-proteasome pathway in disease pathogenesis.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                13 February 2018
                February 2018
                : 10
                : 2
                : 80
                Affiliations
                [1 ]Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; advam@ 123456iibr.gov.il
                [2 ]Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; rona@ 123456iibr.gov.il (R.A.); taln@ 123456iibr.gov.il (T.N.-P.); yoavg@ 123456iibr.gov.il (Y.G.)
                [3 ]Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; eyale@ 123456iibr.gov.il
                Author notes
                [* ]Correspondence: ohadm@ 123456iibr.gov.il ; Tel.: +972-8-938-5862; Fax: +972-8-938-1544
                Article
                toxins-10-00080
                10.3390/toxins10020080
                5848181
                29438273
                690e762d-22b9-4b97-82b4-f26a3b3e0082
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 January 2018
                : 08 February 2018
                Categories
                Article

                Molecular medicine
                abrin,monoclonal antibodies,phage-display,rabbit,recombinant antibodies
                Molecular medicine
                abrin, monoclonal antibodies, phage-display, rabbit, recombinant antibodies

                Comments

                Comment on this article