3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hydroxyapatite: catalyst for a one-pot pentose formation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydroxyapatite powder catalyzes the production of ribose from C1 and C2 carbon sources in one pot in hot water.

          Abstract

          One of the possible synthetic routes to pentoses is the formose reaction pathway from C1 and C2 carbon sources, but preferential ribose generation in a one-pot reaction without any control of conditions has not been reported. We have tested a one-pot pentose formation and analyzed the products and mechanism in the reaction, using 1H-NMR and mass spectrometry. Hydroxyapatite (HAp), which consists of phosphate and calcium ions, worked continuously for cross-aldol reactions and Lobry de Bruyn–van Ekenstein transformations to yield ribose from formaldehyde and glycolaldehyde. The continuous reaction proceeds in one pot in hot water only in the presence of a HAp catalyst, without any fine pH control or any complicated condition control at each reaction step. Ribose production by HAp may be a reason why a pentose backbone was incorporated into nucleic acids in the prebiotic world.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: not found
          • Article: not found

          Borate minerals stabilize ribose.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the mechanism of the formose reaction

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA.

              RNA has been called a "prebiotic chemist's nightmare" because of its combination of large size, carbohydrate building blocks, bonds that are thermodynamically unstable in water, and overall intrinsic instability. However, a discontinuous synthesis model is well-supported by experimental work that might produce RNA from atmospheric CO(2), H(2)O, and N(2). For example, electrical discharge in such atmospheres gives formaldehyde (HCHO) in large amounts and glycolaldehyde (HOCH(2)CHO) in small amounts. When rained into alkaline aquifers generated by serpentinizing rocks, these substances were undoubtedly converted to carbohydrates including ribose. Likewise, atmospherically generated HCN was undoubtedly converted in these aquifers to formamide and ammonium formate, precursors for RNA nucleobases. Finally, high reduction potentials maintained by mantle-derived rocks and minerals would allow phosphite to be present in equilibrium with phosphate, mobilizing otherwise insoluble phosphorus for the prebiotic synthesis of phosphite and phosphate esters after oxidation. So why does the community not view this discontinuous synthesis model as compelling evidence for the RNA-first hypothesis for the origin of life? In part, the model is deficient because no experiments have joined together those steps without human intervention. Further, many steps in the model have problems. Some are successful only if reactive compounds are presented in a specific order in large amounts. Failing controlled addition, the result produces complex mixtures that are inauspicious precursors for biology, a situation described as the "asphalt problem". Many bonds in RNA are thermodynamically unstable with respect to hydrolysis in water, creating a "water problem". Finally, some bonds in RNA appear to be "impossible" to form under any conditions considered plausible for early Earth. To get a community-acceptable "RNA first" model for the origin of life, the discontinuous synthesis model must be developed. In particular, the model must be refined so that it yields oligomeric RNA from CO(2), H(2)O, and N(2) without human intervention. This Account describes our efforts in this direction. Our hypothesis centers on a geological model that synthesizes RNA in a prebiotic intermountain dry valley (not in a marine environment). This valley receives high pH run-off from a watershed rich in serpentinizing olivines and eroding borate minerals. The runoff contains borate-stabilized carbohydrates, formamide, and ammonium formate. As atmospheric CO(2) dissolves in the subaerial aquifer, the pH of the aquifer is lowered. In the desert valley, evaporation of water, a solvent with a nucleophilic "background reactivity", leaves behind formamide, a solvent with an electrophilic "background reactivity". As a result, nucleobases, formylated nucleobases, and formylated carbohydrates, including formylated ribose, can form. Well-known chemistry transforms these structures into nucleosides, nucleotides, and partially formylated oligomeric RNA.
                Bookmark

                Author and article information

                Journal
                OBCRAK
                Organic & Biomolecular Chemistry
                Org. Biomol. Chem.
                Royal Society of Chemistry (RSC)
                1477-0520
                1477-0539
                2017
                2017
                : 15
                : 42
                : 8888-8893
                Affiliations
                [1 ]Department of Chemistry and Biotechnology
                [2 ]Graduate School of Engineering
                [3 ]The University of Tokyo
                [4 ]Tokyo 113-8656
                [5 ]Japan
                Article
                10.1039/C7OB02051A
                69a0a981-8a90-4c2a-8b91-141caffde781
                © 2017
                History

                Comments

                Comment on this article