Damping is critical for the roll motion response of a ship in waves. A common method for the assessment of damping in a ship’s rolling motion is to perform a free-decay experiment in calm water. In this paper, we propose an approach for estimating nonlinear damping that involves a linear exponential analytical approximation of the experimental roll free-decay amplitudes, followed by parametric identification based on the asymptotic method. The restoring moment can be strongly nonlinear. To validate this method, we first analyzed numerically simulated roll free-decay data using rolling equations with two alternative parametric forms: linear-plus-quadratic and linear-plus-cubic damping. By doing so, we obtained accurate estimates of nonlinear damping coefficients, even for large initial roll amplitudes. Then, we applied the proposed method to real free-decay data obtained from a scale model of a bulk barrier, and found the simulated results to be in good agreement with the experimental data. Using only free-decay peak data, the proposed method can be used to estimate nonlinear roll-damping coefficients for conditions with a strongly nonlinear restoring moment and large initial roll amplitudes.
The copyright to this article, including any graphic elements therein (e.g. illustrations, charts, moving images), is hereby assigned for good and valuable consideration to the editorial office of Journal of Ocean University of China, Science Press and Springer effective if and when the article is accepted for publication and to the extent assignable if assignability is restricted for by applicable law or regulations (e.g. for U.S. government or crown employees).