0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coupling Uniform Pore Size And Multi‑Chemisorption Sites: Hierarchically Ordered Porous Carbon For Ultra‐Fast And Large Zinc Ion Storage

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Constructing hierarchically ordered macro/meso−microporous structures of carbonaceous cathode with matchable pore size and adequate active sites is significant toward large Zn 2+ storage, but remains a formidable challenge. Herein, a new perspective is reported for synthesizing phosphorus and nitrogen dual‐doped hierarchical ordered porous carbon (PN‐HOPC) by eliminating the micropore confinement effect and synchronously introducing multi‐chemisorption sites. The interconnected macropore can effectively facilitate long‐distance mass transfer, and meso−microporous wall can promote accessibility of active sites. Density functional theory (DFT) calculations identify that the P and N co‐doping markedly contributes to the reversible adsorption/desorption of zinc ions and protons. Consequently, the optimized PN‐HOPC exhibits outstanding Zn 2+ storage capabilities in terms of high capacity (211.9 mAh g −1), superb energy density (169.5 Wh kg −1), and ultralong lifespan (99.3% retention after 60 000 cycles). Systematic ex situ measurements integrating with in situ Raman spectroscopy and electrochemical quartz crystal microbalance (EQCM) techniques elucidate that the superior electrochemical capability is ascribed to the synergistic effect of the Zn 2+, H +, and SO 4 2− co‐adsorption mechanism, as well as invertible chemical adsorption. This study not only provides new insights to design advanced carbon materials toward practical applications but also sheds lights on a deeper understanding of charge storage mechanism for zinc‐ion capacitors (ZICs).

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Highly reversible zinc metal anode for aqueous batteries

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors.

            Capacitive energy storage is distinguished from other types of electrochemical energy storage by short charging times and the ability to deliver significantly more power than batteries. A key limitation to this technology is its low energy density and for this reason there is considerable interest in exploring pseudocapacitive materials where faradaic mechanisms offer increased levels of energy storage. Here we show that the capacitive charge-storage properties of mesoporous films of iso-oriented alpha-MoO(3) are superior to those of either mesoporous amorphous material or non-porous crystalline MoO(3). Whereas both crystalline and amorphous mesoporous materials show redox pseudocapacitance, the iso-oriented layered crystalline domains enable lithium ions to be inserted into the van der Waals gaps of the alpha-MoO(3). We propose that this extra contribution arises from an intercalation pseudocapacitance, which occurs on the same timescale as redox pseudocapacitance. The result is increased charge-storage capacity without compromising charge/discharge kinetics in mesoporous crystalline MoO(3).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Multidimensional materials and device architectures for future hybrid energy storage

              Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                October 2023
                May 26 2023
                October 2023
                : 33
                : 40
                Affiliations
                [1 ] College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
                [2 ] Department of Chemistry and Chemical Engineering Novosibirsk State Technical University K. Marx 20 Novosibirsk 630073 Russia
                [3 ] National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
                Article
                10.1002/adfm.202303205
                6a3d29de-8c10-40f1-b20d-6c380e4ac160
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article