6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies

      , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Review of Biomonitoring of Phthalate Exposures

          Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have been recognized as substances of high concern. Human exposure to phthalates occurs mainly via dietary sources, dermal absorption, and air inhalation. Phthalates are excreted as conjugated monoesters in urine, and some phthalates, such as di-2-ethylhexyl phthalate (DEHP), undergo secondary metabolism, including oxidative transformation, prior to urinary excretion. The occurrence of phthalates and their metabolites in urine, serum, breast milk, and semen has been widely reported. Urine has been the preferred matrix in human biomonitoring studies, and concentrations on the order of several tens to hundreds of nanograms per milliliter have been reported for several phthalate metabolites. Metabolites of diethyl phthalate (DEP), dibutyl- (DBP) and diisobutyl- (DiBP) phthalates, and DEHP were the most abundant compounds measured in urine. Temporal trends in phthalate exposures varied among countries. In the United States (US), DEHP exposure has declined since 2005, whereas DiNP exposure has increased. In China, DEHP exposure has increased since 2000. For many phthalates, exposures in children are higher than those in adults. Human epidemiological studies have shown a significant association between phthalate exposures and adverse reproductive outcomes in women and men, type II diabetes and insulin resistance, overweight/obesity, allergy, and asthma. This review compiles biomonitoring studies of phthalates and exposure doses to assess health risks from phthalate exposures in populations across the globe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus).

            The impact of microplastics (plastic fragments smaller than 5 mm) on large filter feeding marine organisms such as baleen whales and sharks are largely unknown. These species potentially are ingesting micro-litter by filter feeding activity. Here we present the case studies of the Mediterranean fin whale (Balaenoptera physalus) and basking shark (Cetorhinus maximus) exploring the toxicological effects of microplastics in these species measuring the levels of phthalates in both species. The results show higher concentration of MEHP in the muscle of basking shark in comparison to fin whale blubber. These species can be proposed as indicators of microplastics in the pelagic environment in the implementation of Descriptor 8 and 10 of the EU Marine Strategy Framework Directive (MSFD).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Phthalate exposure and neurodevelopment: A systematic review and meta-analysis of human epidemiological evidence

              Objective: We performed a systematic review of the epidemiology literature to identify the neurodevelopmental effects associated with phthalate exposure. Data sources and study eligibility criteria: Six phthalates were included in the review: di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP). The initial literature search (of PubMed, Web of Science, and Toxline) included all studies of neurodevelopmental effects in humans, and outcomes were selected for full systematic review based on data availability. Study evaluation and synthesis methods: Studies of neurodevelopmental effects were evaluated using criteria defined a priori for risk of bias and sensitivity by two reviewers using a domain-based approach. Evidence was synthesized by outcome and phthalate and strength of evidence was summarized using a structured framework. For studies of cognition and motor effects in children ≤4 years old, a random effects meta-analysis was performed. Results: The primary outcomes reviewed here are (number of studies in parentheses): cognition (14), motor effects (9), behavior, including attention deficit hyperactivity disorder (20), infant behavior (3), and social behavior, including autism spectrum disorder (7). For each phthalate/outcome combination, there was slight or indeterminate evidence of an association, with the exception of motor effects for BBP, which had moderate evidence. Conclusions and implications of key findings: Overall, there is not a clear pattern of association between prenatal phthalate exposures and neurodevelopment. There are several possible reasons for the observed null associations related to exposure misclassification, periods of heightened susceptibility, sex-specific effects, and the effects of phthalate mixtures. Until these limitations are adequately addressed in the epidemiology literature, these findings should not be interpreted as evidence that there are no neurodevelopmental effects of phthalate exposure. The views expressed are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                June 2021
                June 2021
                : 771
                : 145418
                Article
                10.1016/j.scitotenv.2021.145418
                33548714
                6a572e18-adad-4453-8c5a-3eeb90227b93
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article