8
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beta-variant recombinant booster vaccine elicits broad cross-reactive neutralization of SARS-CoV-2 including Omicron variants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          SARS-CoV-2 Omicron lineage contains variants with multiple sequence mutations relative to the ancestral strain particularly in the viral spike gene. These mutations are associated inter alia with loss of neutralization sensitivity to sera generated by immunization with vaccines targeting ancestral strains or prior infection with circulating (non-Omicron) variants. Here we present a comparison of vaccine formulation elicited cross neutralization responses using two different assay readouts from a subpopulation of a Phase II/III clinical trial.

          Methods

          Human sera from a Phase II/III trial (NCT04762680) was collected and evaluated for neutralizing responses to SARS-CoV-2 spike antigen protein vaccines formulated with AS03 adjuvant, following a primary series of two-doses of ancestral strain vaccine in individuals who were previously unvaccinated or as an ancestral or variant strain booster vaccine among individuals previously vaccinated with the mRNA BNT162b2 vaccine.

          Results

          We report that a neutralizing response to Omicron BA.1 is induced by the two-dose primary series in 89% of SARS-CoV-2-seronegative individuals. A booster dose of each vaccine formulation raises neutralizing antibody titers that effectively neutralizes Omicron BA.1 and BA.4/5 variants. Responses are highest after the monovalent Beta variant booster and similar in magnitude to human convalescent plasma titers.

          Conclusion

          The findings of this study suggest the possibility to generate greater breadth of cross-neutralization to more recently emerging viral variants through use of a diverged spike vaccine in the form of a Beta variant booster vaccine.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization

          The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Considerable escape of SARS-CoV-2 Omicron to antibody neutralization

            The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial

              Symptomatic COVID-19 infection can be prevented by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. A “correlate of protection” is a molecular biomarker to measure how much immunity is needed to fight infection and is key for successful global immunization programs. Gilbert et al . determined that antibodies are the correlate of protection in vaccinated individuals enrolled in the Moderna COVE phase 3 clinical trial (see the Perspective by Openshaw). By measuring binding and neutralizing antibodies against the viral spike protein, the authors found that the levels of both antibodies correlated with the degree of vaccine efficacy. The higher the antibody level, the greater the protection afforded by the messenger RNA (mRNA) vaccine. Antibody levels that predict mRNA vaccine efficacy can therefore be used to guide vaccine regimen modifications and support regulatory approvals for a broader spectrum of the population. —PNK SARS-CoV-2 binding and neutralizing antibodies correlate with the degree of vaccine efficacy and protection for the Moderna mRNA COVID-19 vaccine. In the coronavirus efficacy (COVE) phase 3 clinical trial, vaccine recipients were assessed for neutralizing and binding antibodies as correlates of risk for COVID-19 disease and as correlates of protection. These immune markers were measured at the time of second vaccination and 4 weeks later, with values reported in standardized World Health Organization international units. All markers were inversely associated with COVID-19 risk and directly associated with vaccine efficacy. Vaccine recipients with postvaccination 50% neutralization titers 10, 100, and 1000 had estimated vaccine efficacies of 78% (95% confidence interval, 54 to 89%), 91% (87 to 94%), and 96% (94 to 98%), respectively. These results help define immune marker correlates of protection and may guide approval decisions for messenger RNA (mRNA) COVID-19 vaccines and other COVID-19 vaccines.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                28 February 2024
                15 March 2024
                28 February 2024
                : 10
                : 5
                : e27033
                Affiliations
                [a ]Institut Pasteur, Paris, France
                [b ]Clinical Sciences and Operations, Sanofi, Chengdu, China
                [c ]Sanofi, Swiftwater, PA, USA
                [d ]MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
                [e ]National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
                [f ]Sanofi, Waltham, MA, USA
                [g ]Centre for the AIDS Programme of Research in South Africa, University of Kwazulu-Natal, Durban, South Africa
                [h ]Sanofi, Reading, UK
                Author notes
                [* ]Corresponding author. guy.debruyn@ 123456sanofi.com
                [1]

                These authors contributed equally.

                Article
                S2405-8440(24)03064-0 e27033
                10.1016/j.heliyon.2024.e27033
                10938114
                38486776
                6b072644-19b8-441e-868b-506e3bcd1ca9
                © 2024 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 November 2023
                : 22 February 2024
                : 22 February 2024
                Categories
                Research Article

                vaccines,sars cov-2,covid-19,booster,neutralizing antibody,randomized controlled trial

                Comments

                Comment on this article