23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating data from an online diabetes prevention program into an electronic health record and clinical workflow, a design phase usability study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Health information is increasingly being digitally stored and exchanged. The public is regularly collecting and storing health-related data on their own electronic devices and in the cloud. Diabetes prevention is an increasingly important preventive health measure, and diet and exercise are key components of this. Patients are turning to online programs to help them lose weight. Despite primary care physicians being important in patients’ weight loss success, there is no exchange of information between the primary care provider (PCP) and these online weight loss programs. There is an emerging opportunity to integrate this data directly into the electronic health record (EHR), but little is known about what information to share or how to share it most effectively. This study aims to characterize the preferences of providers concerning the integration of externally generated lifestyle modification data into a primary care EHR workflow.

          Methods

          We performed a qualitative study using two rounds of semi-structured interviews with primary care providers. We used an iterative design process involving primary care providers, health information technology software developers and health services researchers to develop the interface.

          Results

          Using grounded-theory thematic analysis 4 themes emerged from the interviews: 1) barriers to establishing healthy lifestyles, 2) features of a lifestyle modification program, 3) reporting of outcomes to the primary care provider, and 4) integration with primary care. These themes guided the rapid-cycle agile design process of an interface of data from an online diabetes prevention program into the primary care EHR workflow.

          Conclusions

          The integration of external health-related data into the EHR must be embedded into the provider workflow in order to be useful to the provider and beneficial for the patient. Accomplishing this requires evaluation of that clinical workflow during software design. The development of this novel interface used rapid cycle iterative design, early involvement by providers, and usability testing methodology. This provides a framework for how to integrate external data into provider workflow in efficient and effective ways. There is now the potential to realize the importance of having this data available in the clinical setting for patient engagement and health outcomes.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          The "meaningful use" regulation for electronic health records.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Effectiveness of Web-Based vs. Non-Web-Based Interventions: A Meta-Analysis of Behavioral Change Outcomes

            Background A primary focus of self-care interventions for chronic illness is the encouragement of an individual's behavior change necessitating knowledge sharing, education, and understanding of the condition. The use of the Internet to deliver Web-based interventions to patients is increasing rapidly. In a 7-year period (1996 to 2003), there was a 12-fold increase in MEDLINE citations for “Web-based therapies.” The use and effectiveness of Web-based interventions to encourage an individual's change in behavior compared to non-Web-based interventions have not been substantially reviewed. Objective This meta-analysis was undertaken to provide further information on patient/client knowledge and behavioral change outcomes after Web-based interventions as compared to outcomes seen after implementation of non-Web-based interventions. Methods The MEDLINE, CINAHL, Cochrane Library, EMBASE, ERIC, and PSYCHInfo databases were searched for relevant citations between the years 1996 and 2003. Identified articles were retrieved, reviewed, and assessed according to established criteria for quality and inclusion/exclusion in the study. Twenty-two articles were deemed appropriate for the study and selected for analysis. Effect sizes were calculated to ascertain a standardized difference between the intervention (Web-based) and control (non-Web-based) groups by applying the appropriate meta-analytic technique. Homogeneity analysis, forest plot review, and sensitivity analyses were performed to ascertain the comparability of the studies. Results Aggregation of participant data revealed a total of 11,754 participants (5,841 women and 5,729 men). The average age of participants was 41.5 years. In those studies reporting attrition rates, the average drop out rate was 21% for both the intervention and control groups. For the five Web-based studies that reported usage statistics, time spent/session/person ranged from 4.5 to 45 minutes. Session logons/person/week ranged from 2.6 logons/person over 32 weeks to 1008 logons/person over 36 weeks. The intervention designs included one-time Web-participant health outcome studies compared to non-Web participant health outcomes, self-paced interventions, and longitudinal, repeated measure intervention studies. Longitudinal studies ranged from 3 weeks to 78 weeks in duration. The effect sizes for the studied outcomes ranged from -.01 to .75. Broad variability in the focus of the studied outcomes precluded the calculation of an overall effect size for the compared outcome variables in the Web-based compared to the non-Web-based interventions. Homogeneity statistic estimation also revealed widely differing study parameters (Qw16 = 49.993, P ≤ .001). There was no significant difference between study length and effect size. Sixteen of the 17 studied effect outcomes revealed improved knowledge and/or improved behavioral outcomes for participants using the Web-based interventions. Five studies provided group information to compare the validity of Web-based vs. non-Web-based instruments using one-time cross-sectional studies. These studies revealed effect sizes ranging from -.25 to +.29. Homogeneity statistic estimation again revealed widely differing study parameters (Qw4 = 18.238, P ≤ .001). Conclusions The effect size comparisons in the use of Web-based interventions compared to non-Web-based interventions showed an improvement in outcomes for individuals using Web-based interventions to achieve the specified knowledge and/or behavior change for the studied outcome variables. These outcomes included increased exercise time, increased knowledge of nutritional status, increased knowledge of asthma treatment, increased participation in healthcare, slower health decline, improved body shape perception, and 18-month weight loss maintenance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality.

              While evidence-based medicine has increasingly broad-based support in health care, it remains difficult to get physicians to actually practice it. Across most domains in medicine, practice has lagged behind knowledge by at least several years. The authors believe that the key tools for closing this gap will be information systems that provide decision support to users at the time they make decisions, which should result in improved quality of care. Furthermore, providers make many errors, and clinical decision support can be useful for finding and preventing such errors. Over the last eight years the authors have implemented and studied the impact of decision support across a broad array of domains and have found a number of common elements important to success. The goal of this report is to discuss these lessons learned in the interest of informing the efforts of others working to make the practice of evidence-based medicine a reality.
                Bookmark

                Author and article information

                Contributors
                617-414-6611 , rgrochow@bu.edu
                jordan.yoder@bmc.org
                dan@moxehealth.com
                dmann@bu.edu
                Journal
                BMC Med Inform Decis Mak
                BMC Med Inform Decis Mak
                BMC Medical Informatics and Decision Making
                BioMed Central (London )
                1472-6947
                11 July 2016
                11 July 2016
                2016
                : 16
                : 88
                Affiliations
                [ ]Boston University School of Medicine, 801 Massachusetts Avenue, Crosstown 2nd floor, Boston, MA 02118 USA
                [ ]Moxe Health, Madison, Wisconsin USA
                Article
                328
                10.1186/s12911-016-0328-x
                4940704
                27401606
                6bbf2daf-adb4-427c-82fd-1b144ce334f1
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 January 2016
                : 3 July 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000062, National Institute of Diabetes and Digestive and Kidney Diseases (US);
                Award ID: R03 DK098162-02
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Bioinformatics & Computational biology
                clinical decision support,electronic health record,usability testing,e-health,preventive medicine

                Comments

                Comment on this article