44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Impact of Resistance Training on Swimming Performance: A Systematic Review

      , ,
      Sports Medicine
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of propulsive forces in swimming are produced from the upper body, with strong correlations between upper body strength and sprint performance. There are significant gaps in the literature relating to the impact of resistance training on swimming performance, specifically the transfer to swimming performance.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Developing maximal neuromuscular power: Part 1--biological basis of maximal power production.

          This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and inter-muscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises.

            The primary objective of this investigation was to identify which components of endurance training (e.g., modality, duration, frequency) are detrimental to resistance training outcomes. A meta-analysis of 21 studies was performed with a total of 422 effect sizes (ESs). Criteria for the study included were (a) compare strength training alone to strength plus endurance training (concurrent) or to compare combinations of concurrent training; (b) the outcome measures include at least one measure of strength, power, or hypertrophy; and (c) the data necessary to calculate ESs must be included or available. The mean ES for hypertrophy for strength training was 1.23; for endurance training, it was 0.27; and for concurrent training, it was 0.85, with strength and concurrent training being significantly greater than endurance training only. The mean ES for strength development for strength training was 1.76; for endurance training, it was 0.78; and for concurrent training, it was 1.44. Strength and concurrent training was significantly greater than endurance training. The mean ES for power development for strength training only was 0.91; for endurance training, it was 0.11; and for concurrent training, it was 0.55. Significant differences were found between all the 3 groups. For moderator variables, resistance training concurrently with running, but not cycling, resulted in significant decrements in both hypertrophy and strength. Correlational analysis identified significant negative relationships between frequency (-0.26 to -0.35) and duration (-0.29 to -0.75) of endurance training for hypertrophy, strength, and power. Significant relationships (p < 0.05) between ES for decreased body fat and % maximal heart rate (r = -0.60) were also found. Our results indicate that interference effects of endurance training are a factor of the modality, frequency, and duration of the endurance training selected.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Molecular Bases of Training Adaptation

                Bookmark

                Author and article information

                Journal
                Sports Medicine
                Sports Med
                Springer Science and Business Media LLC
                0112-1642
                1179-2035
                November 2017
                May 12 2017
                November 2017
                : 47
                : 11
                : 2285-2307
                Article
                10.1007/s40279-017-0730-2
                28497283
                6bd1c3c4-2a34-4725-94a7-a08f1cf81e9b
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article