5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pharmacokinetics in obese patients

      , ,
      Continuing Education in Anaesthesia Critical Care & Pain
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers.

          Unresolved issues with propofol include whether the pharmacokinetics are linear with dose, are influenced by method of administration (bolus vs. infusion), or are influenced by age. Recently, a new formulation of propofol emulsion, containing disodium edetate (EDTA), was introduced in the United States. Addition of EDTA was found by the manufacturer to significantly reduce bacterial growth. This study investigated the influences of method of administration, infusion rate, patient covariates, and EDTA on the pharmacokinetics of propofol. Twenty-four healthy volunteers aged 26-81 yr were given a bolus dose of propofol, followed 1 h later by a 60-min infusion. Each volunteer was randomly assigned to an infusion rate of 25, 50, 100, or 200 microg x kg(-1) x min(-1). Each volunteer was studied twice under otherwise identical circumstances: once receiving propofol without EDTA and once receiving propofol with EDTA. The influence of the method of administration and of the volunteer covariates was explored by fitting a three-compartment mamillary model to the data. The influence of EDTA was investigated by direct comparison of the measured concentrations in both sessions. The concentrations of propofol with and without EDTA were not significantly different. The concentration measurements after the bolus dose were significantly underpredicted by the parameters obtained just from the infusion data. The kinetics of propofol were linear within the infusion range of 25-200 microg x kg(-1) x min(-1). Age was a significant covariate for Volume2 and Clearance2, as were weight, height, and lean body mass for the metabolic clearance. These results demonstrate that method of administration (bolus vs. infusion), but not EDTA, influences the pharmacokinetics of propofol. Within the clinically relevant range, the kinetics of propofol during infusions are linear regarding infusion rate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacokinetic model driven infusion of propofol in children.

            A computer controlled infusion device for propofol was used to induce and maintain general anaesthesia in 20 children undergoing minor surgical procedures. The device was programmed with an adult pharmacokinetic model for propofol. During and after anaesthesia, blood samples were taken for measurement of propofol concentrations and it was found that the values obtained were systematically overpredicted by the delivery system algorithm. New pharmacokinetic microconstants were derived from our data which reflected more accurately the elimination and distribution of propofol in a prospective study involving another 10 children.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linearity of pharmacokinetics and model estimation of sufentanil.

              The pharmacokinetic profiles of sufentanil available in the literature are conflicting because of methodologic differences. Length of sampling and assay sensitivity are key factors involved in accurately estimating the volumes of distribution, clearances, and elimination phase. The unit disposition function of increasing doses of sufentanil were investigated and the influence of dose administered on the linearity of pharmacokinetics was assessed. The pharmacokinetics of sufentanil were investigated in 23 patients, aged 14-68 yr, scheduled for surgery with postoperative ventilation. After induction of anesthesia, sufentanil was administered as a short infusion (10-20 min) in doses ranging from 250 micrograms to 1,500 micrograms. Frequent arterial blood samples were gathered during and at the end of infusion, then at specific intervals up to 48 h after infusion. Plasma concentrations of sufentanil were measured by radioimmunoassay (limit of sensitivity 0.02 ng.ml-1). The data were analyzed with the standard two-stage, naive pooled-data and the mixed effect pharmacokinetic approaches. The pharmacokinetics of sufentanil were adequately described by a linear three-compartmental mamillary model with the following parameters, expressed as log mean values with 95% confidence intervals: the central volume of distribution = 14.3 l (13.1-15.41), the rapidly equilibrating volume = 63.1 l (61.9-64.3 l), the slowly equilibrating volume = 261.6 l (260.2-262.9 l), the steady-state distribution volume = 339 l (335-343 l), metabolic clearance = 0.92 l.min-1 (0.84-1.05 l.min-1), rapid distribution clearance = 1.55 l.min-1 (1.34-2.14 l.min-1), slow distribution clearance = 0.33 l.min-1 (0.27-0.49 l.min-1), and elimination half-life = 769 min (690-1011 min). No relation to age, weight, or lean body mass was found for any of the parameters. Sufentanil pharmacokinetics were linear within the dose range studied. Drug detection up to 24 h after dosing was necessary to define the terminal elimination phase. The metabolic clearance approached liver blood flow and a large volume of distribution was identified, consistent with the long terminal elimination half-life. Simulations predicted that plasma sufentanil steady-state concentrations would rapidly decline after termination of an infusion despite the long half-lives.
                Bookmark

                Author and article information

                Journal
                Continuing Education in Anaesthesia Critical Care & Pain
                Continuing Education in Anaesthesia Critical Care & Pain
                Oxford University Press (OUP)
                17431816
                October 2004
                October 2004
                : 4
                : 5
                : 152-155
                Article
                10.1093/bjaceaccp/mkh042
                6c455fe7-3a92-410c-b66f-05e172656d85
                © 2004

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article