2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Protective Effects of Peroxisome Proliferator-Activated Receptor Gamma in Cerebral Ischemia-Reperfusion Injury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cerebral ischemia-reperfusion injury (CI/RI) is a complex pathological process that often occurs secondary to trauma, surgery, and shock. Peroxisome proliferator activated receptor gamma (PPARγ) is a subunit of the PPAR and is a ligand-activated nuclear transcription factor. After being activated by its ligand, PPARγ can combine with specific DNA response elements to regulate the transcription and expression of genes. It has a wide range of biological functions, such as regulating lipid metabolism, improving insulin sensitivity, modulating anti-tumor mechanisms, and inhibiting inflammation. In recent years, some studies have shown that PPARγ exerts a protective effect during CI/RI. This article aims to summarize the research progress of studies that have investigated the protective effects of PPARγ in CI/RI and the cellular and molecular mechanisms through which these effects are modulated, including inhibition of excitatory amino acid toxicity, reduced Ca 2+ overload, anti-oxidative stress, anti-inflammation, inhibition of microglial activation, maintain the BBB, promotion of angiogenesis, and neurogenesis and anti-apoptotic processes.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Neuronal replacement from endogenous precursors in the adult brain after stroke.

          In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ischemia and reperfusion--from mechanism to translation.

            Ischemia and reperfusion-elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Ischemia-reperfusion injury is also a major challenge during organ transplantation and cardiothoracic, vascular and general surgery. An imbalance in metabolic supply and demand within the ischemic organ results in profound tissue hypoxia and microvascular dysfunction. Subsequent reperfusion further enhances the activation of innate and adaptive immune responses and cell death programs. Recent advances in understanding the molecular and immunological consequences of ischemia and reperfusion may lead to innovative therapeutic strategies for treating patients with ischemia and reperfusion-associated tissue inflammation and organ dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglial M1/M2 polarization and metabolic states.

              Microglia are critical nervous system-specific immune cells serving as tissue-resident macrophages influencing brain development, maintenance of the neural environment, response to injury and repair. As influenced by their environment, microglia assume a diversity of phenotypes and retain the capability to shift functions to maintain tissue homeostasis. In comparison with peripheral macrophages, microglia demonstrate similar and unique features with regards to phenotype polarization, allowing for innate immunological functions. Microglia can be stimulated by LPS or IFN-γ to an M1 phenotype for expression of pro-inflammatory cytokines or by IL-4/IL-13 to an M2 phenotype for resolution of inflammation and tissue repair. Increasing evidence suggests a role of metabolic reprogramming in the regulation of the innate inflammatory response. Studies using peripheral immune cells demonstrate that polarization to an M1 phenotype is often accompanied by a shift in cells from oxidative phosphorylation to aerobic glycolysis for energy production. More recently, the link between polarization and mitochondrial energy metabolism has been considered in microglia. Under these conditions, energy demands would be associated with functional activities and cell survival and thus, may serve to influence the contribution of microglia activation to various neurodegenerative conditions. This review examines the polarization states of microglia and their relationship to mitochondrial metabolism. Additional supporting experimental data are provided to demonstrate mitochondrial metabolic shifts in primary microglia and the BV-2 microglia cell line induced under LPS (M1) and IL-4/IL-13 (M2) polarization.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                17 November 2020
                2020
                : 11
                : 588516
                Affiliations
                [1] 1College of Life Science, Northwest Normal University , Lanzhou, China
                [2] 2College of Life Science, Lanzhou University , Lanzhou, China
                Author notes

                Edited by: Heike Wulff, University of California, Davis, United States

                Reviewed by: Hansen Chen, Stanford University, United States; Yang Yao, Tianjin Medical University General Hospital, China

                *Correspondence: Baoping Shao Shaobp@ 123456lzu.edu.cn

                This article was submitted to Stroke, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2020.588516
                7705069
                33281727
                6c566b54-f7b1-4f08-a6ac-db17f5db9e45
                Copyright © 2020 Ding, Kang, Liu, Xu and Shao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 July 2020
                : 16 October 2020
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 126, Pages: 15, Words: 12495
                Categories
                Neurology
                Review

                Neurology
                cerebral ischemia-reperfusion,peroxisome proliferator-activated receptor γ,anti-inflammation,anti-oxidative stress,microglia activation,anti-apoptosis

                Comments

                Comment on this article