27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of enzyme inducers efavirenz and tipranavir/ritonavir on the pharmacokinetics of the HIV integrase inhibitor dolutegravir

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Dolutegravir (DTG) is an unboosted, integrase inhibitor for the treatment of HIV infection. Two studies evaluated the effects of efavirenz (EFV) and tipranavir/ritonavir (TPV/r) on DTG pharmacokinetics (PK) in healthy subjects.

          Methods

          The first study was an open-label crossover where 12 subjects received DTG 50 mg every 24 hours (q24h) for 5 days, followed by DTG 50 mg and EFV 600 mg q24h for 14 days. The second study was an open-label crossover where 18 subjects received DTG 50 mg q24h for 5 days followed by TPV/r 500/200 mg every 12 hours (q12h) for 7 days and then DTG 50 mg q24h and TPV/r 500/200 mg q12h for a further 5 days. Safety assessments and serial PK samples were collected. Non-compartmental PK analysis and geometric mean ratios and 90 % confidence intervals were generated.

          Results

          The combination of DTG with EFV or TPV/r was generally well tolerated. Four subjects discontinued the TPV/r study due to increases in alanine aminotransferase that were considered related to TPV/r. Co-administration with EFV resulted in decreases of 57, 39 and 75 % in DTG AUC (0– τ) , C max and C τ , respectively. Co-administration with TPV/r resulted in decreases of 59, 46 and 76 % in DTG AUC (0– τ) , C max and C τ , respectively.

          Conclusions

          Given the reductions in exposure and PK/pharmacodynamic relationships in phase II/III trials, DTG should be given at an increased dose of 50 mg twice daily when co-administered with EFV or TPV/r, and alternative regimens without inducers should be considered in integrase inhibitor-resistant patients.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00228-014-1732-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study.

          Dolutegravir (S/GSK1349572) is a once-daily HIV integrase inhibitor with potent antiviral activity and a favourable safety profile. We compared dolutegravir with HIV integrase inhibitor raltegravir, as initial treatment for adults with HIV-1. SPRING-2 is a 96 week, phase 3, randomised, double-blind, active-controlled, non-inferiority study that began on Oct 19, 2010, at 100 sites in Canada, USA, Australia, and Europe. Treatment-naive adults (aged ≥ 18 years) with HIV-1 infection and HIV-1 RNA concentrations of 1000 copies per mL or greater were randomly assigned (1:1) via a computer-generated randomisation sequence to receive either dolutegravir (50 mg once daily) or raltegravir (400 mg twice daily). Study drugs were given with coformulated tenofovir/emtricitabine or abacavir/lamivudine. Randomisation was stratified by screening HIV-1 RNA (≤ 100,000 copies per mL or >100,000 copies per mL) and nucleoside reverse transcriptase inhibitor backbone. Investigators were not masked to HIV-1 RNA results before randomisation. The primary endpoint was the proportion of participants with HIV-1 RNA less than 50 copies per mL at 48 weeks, with a 10% non-inferiority margin. Main secondary endpoints were changes from baseline in CD4 cell counts, incidence and severity of adverse events, changes in laboratory parameters, and genotypic or phenotypic evidence of resistance. Our primary analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01227824. 411 patients were randomly allocated to receive dolutegravir and 411 to receive raltegravir and received at least one dose of study drug. At 48 weeks, 361 (88%) patients in the dolutegravir group achieved an HIV-1 RNA value of less than 50 copies per mL compared with 351 (85%) in the raltegravir group (adjusted difference 2·5%; 95% CI -2·2 to 7·1). Adverse events were similar between treatment groups. The most common events were nausea (59 [14%] patients in the dolutegravir group vs 53 [13%] in the raltegravir group), headache (51 [12%] vs 48 [12%]), nasopharyngitis (46 [11%] vs 48 [12%]), and diarrhoea (47 [11%] in each group). Few patients had drug-related serious adverse events (three [<1%] vs five [1%]), and few had adverse events leading to discontinuation (ten [2%] vs seven [2%] in each group). CD4 cell counts increased from baseline to week 48 in both treatment groups by a median of 230 cells per μL. Rates of graded laboratory toxic effects were similar. We noted no evidence of treatment-emergent resistance in patients with virological failure on dolutegravir, whereas of the patients with virologic failure who received raltegravir, one (6%) had integrase treatment-emergent resistance and four (21%) had nucleoside reverse transcriptase inhibitors treatment-emergent resistance. The non-inferior efficacy and similar safety profile of dolutegravir compared with raltegravir means that if approved, combination treatment with once-daily dolutegravir and fixed-dose nucleoside reverse transcriptase inhibitors would be an effective new option for treatment of HIV-1 in treatment-naive patients. ViiV Healthcare. Copyright © 2013 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial.

            Dolutegravir (S/GSK1349572) is a new HIV-1 integrase inhibitor that has antiviral activity with once daily, unboosted dosing. SPRING-1 is an ongoing study designed to select a dose for phase 3 assessment. We present data from preplanned primary and interim analyses. In a phase 2b, multicentre, dose-ranging study, treatment-naive adults were randomly assigned (1:1:1:1) to receive 10 mg, 25 mg, or 50 mg dolutegravir or 600 mg efavirenz. Dose but not drug allocation was masked. Randomisation was by a central integrated voice-response system according to a computer-generated code. Study drugs were given with either tenofovir plus emtricitabine or abacavir plus lamivudine. Our study was done at 34 sites in France, Germany, Italy, Russia, Spain, and the USA beginning on July 9, 2009. Eligible participants were seropositive for HIV-1, aged 18 years or older, and had plasma HIV RNA viral loads of at least 1000 copies per mL and CD4 counts of at least 200 cells per μL. Our primary endpoint was the proportion of participants with viral load of less than 50 copies per mL at week 16 and we present data to week 48. Analyses were done on the basis of allocation group and included all participants who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT00951015. 205 patients were randomly allocated and received at least one dose of study drug: 53, 51, and 51 to receive 10 mg, 25 mg, and 50 mg dolutegravir, respectively, and 50 to receive efavirenz. Week 16 response rates to viral loads of at most 50 copies per mL were 93% (144 of 155 participants) for all doses of dolutegravir (with little difference between dose groups) and 60% (30 of 50) for efavirenz; week 48 response rates were 87% (139 of 155) for all doses of dolutegravir and 82% (41 of 50) for efavirenz. Response rates between nucleoside reverse transcriptase inhibitor subgroups were similar. We identified three virological failures in the dolutegravir groups and one in the efavirenz group-we did not identify any integrase inhibitor mutations. We did not identify any dose-related clinical or laboratory toxic effects, with more drug-related adverse events of moderate-or-higher intensity in the efavirenz group (20%) than the dolutegravir group (8%). We did not judge that any serious adverse events were related to dolutegravir. Dolutegravir was effective when given once daily without a pharmacokinetic booster and was well tolerated at all assessed doses. Our findings support the assessment of once daily 50 mg dolutegravir in phase 3 trials. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor.

              Dolutegravir (DTG; S/GSK1349572) is a potent HIV-1 integrase inhibitor with a distinct resistance profile and a once-daily dose regimen that does not require pharmacokinetic boosting. This work investigated the in vitro drug transport and metabolism of DTG and assessed the potential for clinical drug-drug interactions. DTG is a substrate for the efflux transporters P-glycoprotein (Pgp) and human breast cancer resistance protein (BCRP). Its high intrinsic membrane permeability limits the impact these transporters have on DTG's intestinal absorption. UDP-glucuronosyltransferase (UGT) 1A1 is the main enzyme responsible for the metabolism of DTG in vivo, with cytochrome P450 (P450) 3A4 being a notable pathway and UGT1A3 and UGT1A9 being only minor pathways. DTG demonstrated little or no inhibition (IC(50) values > 30 μM) in vitro of the transporters Pgp, BCRP, multidrug resistance protein 2, organic anion transporting polypeptide 1B1/3, organic cation transporter (OCT) 1, or the drug metabolizing enzymes CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, UGT1A1, or 2B7. Further, DTG did not induce CYP1A2, 2B6, or 3A4 mRNA in vitro using human hepatocytes. DTG does inhibit the renal OCT2 (IC(50) = 1.9 μM) transporter, which provides a mechanistic basis for the mild increases in serum creatinine observed in clinical studies. These in vitro studies demonstrate a low propensity for DTG to be a perpetrator of clinical drug interactions and provide a basis for predicting when other drugs could result in a drug interaction with DTG.
                Bookmark

                Author and article information

                Contributors
                919-483-7197 , ivy.h.song@gsk.com
                Journal
                Eur J Clin Pharmacol
                Eur. J. Clin. Pharmacol
                European Journal of Clinical Pharmacology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0031-6970
                1432-1041
                23 August 2014
                23 August 2014
                2014
                : 70
                : 10
                : 1173-1179
                Affiliations
                [ ]GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, Durham, NC 27709 USA
                [ ]GlaxoSmithKline, Stockley Park, Uxbridge, UK
                [ ]GlaxoSmithKline, Stevenage, UK
                [ ]Shionogi & Co., Ltd., Osaka, Japan
                Article
                1732
                10.1007/s00228-014-1732-8
                4158172
                25146692
                6cd400be-fd1f-4e59-a440-ecd4922ad1bb
                © The Author(s) 2014

                Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 7 May 2014
                : 11 August 2014
                Categories
                Clinical Trial
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2014

                Pharmacology & Pharmaceutical medicine
                dolutegravir,drug interaction,efavirenz,tipranavir
                Pharmacology & Pharmaceutical medicine
                dolutegravir, drug interaction, efavirenz, tipranavir

                Comments

                Comment on this article