8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hybrid chitosan/gelatin/nanohydroxyapatite scaffolds promote odontogenic differentiation of dental pulp stem cells and in vitro biomineralization

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo.

          Dentinal repair in the postnatal organism occurs through the activity of specialized cells, odontoblasts, that are thought to be maintained by an as yet undefined precursor population associated with pulp tissue. In this study, we isolated a clonogenic, rapidly proliferative population of cells from adult human dental pulp. These DPSCs were then compared with human bone marrow stromal cells (BMSCs), known precursors of osteoblasts. Although they share a similar immunophenotype in vitro, functional studies showed that DPSCs produced only sporadic, but densely calcified nodules, and did not form adipocytes, whereas BMSCs routinely calcified throughout the adherent cell layer with clusters of lipid-laden adipocytes. When DPSCs were transplanted into immunocompromised mice, they generated a dentin-like structure lined with human odontoblast-like cells that surrounded a pulp-like interstitial tissue. In contrast, BMSCs formed lamellar bone containing osteocytes and surface-lining osteoblasts, surrounding a fibrous vascular tissue with active hematopoiesis and adipocytes. This study isolates postnatal human DPSCs that have the ability to form a dentin/pulp-like complex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities.

            Adipose-derived stem cells (ASCs) have valuable applications in regenerative medicine, but maintaining the stemness of ASCs during in vitro culture is still a challenging issue. In this study, human ASCs spontaneously formed three-dimensional spheroids on chitosan films. Most ASCs within the spheroid were viable, and the cells produced more extracellular molecules, like laminin and fibronectin. Comparing to monolayer culture, ASC spheroids also exhibited enhanced cell survival in serum deprivation condition. Although cell proliferation was inhibited in spheroids, ASCs readily migrated out and proliferated upon transferring spheroids to another adherent growth surface. Moreover, spheroid-derived ASCs exhibited higher expansion efficiency and colony-forming activity. Importantly, we demonstrated that spheroid formation of human ASCs on chitosan films induced significant upregulation of pluripotency marker genes (Sox-2, Oct-4 and Nanog). By culturing the ASC spheroids in proper induction media, we found that ASC differentiation capabilities were significantly enhanced after spheroid formation, including increased transdifferentiation efficiency into neuron and hepatocyte-like cells. In a nude mice model, we further showed a significantly higher cellular retention ratio of ASC spheroids after intramuscular injection of spheroids and dissociated ASCs. These results suggested that ASCs cultured as spheroids on chitosan films can increase their therapeutic potentials. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering.

              We describe a comparative assessment of the structure-property-process relationship of three-dimensional chitosan-nanohydroxyapatite (nHA) and pure chitosan scaffolds in conjunction with their respective biological response with the aim of advancing our insight into aspects that concern bone tissue engineering. High- and medium-molecular-weight (MW) chitosan scaffolds with 0.5, 1 and 2 wt.% fraction of nHA were fabricated by freezing and lyophilization. The nanocomposites were characterized by a highly porous structure and the pore size (approximately 50 to 120 microm) was in a similar range for the scaffolds with different content of nHA. A combination of X-ray diffraction, Fourier transform infrared spectroscopy and electron microscopy indicated that nHA particles were uniformly dispersed in chitosan matrix and there was a chemical interaction between chitosan and nHA. The compression modulus of hydrated chitosan scaffolds was increased on the addition of 1 wt.% nHA from 6.0 to 9.2 kPa in high-MW scaffold. The water uptake ability of composites decreased with an increase in the amount of nHA, while the water retention ability was similar to pure chitosan scaffold. After 28 days in physiological condition, nanocomposites indicated about 10% lower degree of degradation in comparison to chitosan scaffold. The biological response of pre-osteoblasts (MC 3T3-E1) on nanocomposite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to chitosan scaffold. In composite scaffolds, cell proliferation was about 1.5 times greater than pure chitosan after 7 days of culture and beyond, as implied by qualitative analysis via fluorescence microscopy and quantitative study through MTT assay. The observations related to well-developed structure morphology, physicochemical properties and superior cytocompatibility suggest that chitosan-nHA porous scaffolds are potential candidate materials for bone regeneration although it is necessary to further enhance the mechanical properties of the nanocomposite.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Dental Materials
                Dental Materials
                Elsevier BV
                01095641
                January 2021
                January 2021
                : 37
                : 1
                : e23-e36
                Article
                10.1016/j.dental.2020.09.021
                33208264
                6cd6e418-1faa-4932-9a9b-596250973991
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article