12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapeseed ( Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession ‘Express 617’ using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The UCSC genome browser and associated tools

          The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss.

            Ancient tetraploidies are found throughout the eukaryotes. After duplication, one copy of each duplicate gene pair tends to be lost (fractionate). For all studied tetraploidies, the loss of duplicated genes, known as homeologs, homoeologs, ohnologs, or syntenic paralogs, is uneven between duplicate regions. In maize, a species that experienced a tetraploidy 5-12 million years ago, we show that in addition to uneven ancient gene loss, the two complete genomes contained within maize are differentiated by ongoing fractionation among diverse inbreds as well as by a pattern of overexpression of genes from the genome that has experienced less gene loss. These expression differences are consistent over a range of experiments quantifying RNA abundance in different tissues. We propose that the universal bias in gene loss between the genomes of this ancient tetraploid, and perhaps all tetraploids, is the result of selection against loss of the gene responsible for the majority of total expression for a duplicate gene pair. Although the tetraploidy of maize is ancient, biased gene loss and expression continue today and explain, at least in part, the remarkable genetic diversity found among modern maize cultivars.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Understanding mechanisms of novel gene expression in polyploids.

              Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                28 April 2020
                2020
                : 11
                : 496
                Affiliations
                [1] 1Department of Plant Breeding, Justus Liebig University Giessen , Giessen, Germany
                [2] 2NPZ Innovation GmbH , Holtsee, Germany
                Author notes

                Edited by: Sebastian Beier, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany

                Reviewed by: Mark Timothy Rabanus-Wallace, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany; Boas Pucker, University of Cambridge, United Kingdom; Jérémy Just, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), France

                *Correspondence: Rod Snowdon, rod.snowdon@ 123456agrar.uni-giessen.de

                This article was submitted to Plant Systems and Synthetic Biology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.00496
                7202327
                32117356
                6d2fce34-c3e2-4895-a223-2a32d08a2cb1
                Copyright © 2020 Lee, Chawla, Obermeier, Dreyer, Abbadi and Snowdon.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 November 2019
                : 01 April 2020
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 121, Pages: 13, Words: 0
                Funding
                Funded by: Bundesministerium für Bildung und Forschung 10.13039/501100002347
                Award ID: 031B0357A
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                winter oilseed rape,genome assembly,long reads,brassica napus,crop genomics
                Plant science & Botany
                winter oilseed rape, genome assembly, long reads, brassica napus, crop genomics

                Comments

                Comment on this article