7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetes in HFE Hemochromatosis

      review-article
      1 , 2 , * , 1 , 3
      Journal of Diabetes Research
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes in whites of European descent with hemochromatosis was first attributed to pancreatic siderosis. Later observations revealed that the pathogenesis of diabetes in HFE hemochromatosis is multifactorial and its clinical manifestations are heterogeneous. Increased type 2 diabetes risk in HFE hemochromatosis is associated with one or more factors, including abnormal iron homeostasis and iron overload, decreased insulin secretion, cirrhosis, diabetes in first-degree relatives, increased body mass index, insulin resistance, and metabolic syndrome. In p.C282Y homozygotes, serum ferritin, usually elevated at hemochromatosis diagnosis, largely reflects body iron stores but not diabetes risk. In persons with diabetes type 2 without hemochromatosis diagnoses, serum ferritin levels are higher than those of persons without diabetes, but most values are within the reference range. Phlebotomy therapy to achieve iron depletion does not improve diabetes control in all persons with HFE hemochromatosis. The prevalence of type 2 diabetes diagnosed today in whites of European descent with and without HFE hemochromatosis is similar. Routine iron phenotyping or HFE genotyping of patients with type 2 diabetes is not recommended. Herein, we review diabetes in HFE hemochromatosis and the role of iron in diabetes pathogenesis in whites of European descent with and without HFE hemochromatosis.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          Hemochromatosis and iron-overload screening in a racially diverse population.

          Iron overload and hemochromatosis are common, treatable conditions. HFE genotypes, levels of serum ferritin, transferrin saturation values, and self-reported medical history were studied in a multiethnic primary care population. Participants were recruited from primary care practices and blood-drawing laboratories. Blood samples were tested for transferrin saturation, serum ferritin, and C282Y and H63D mutations of the HFE gene. Before genetic screening, participants were asked whether they had a history of medical conditions related to iron overload. Of the 99,711 participants, 299 were homozygous for the C282Y mutation. The estimated prevalence of C282Y homozygotes was higher in non-Hispanic whites (0.44 percent) than in Native Americans (0.11 percent), Hispanics (0.027 percent), blacks (0.014 percent), Pacific Islanders (0.012 percent), or Asians (0.000039 percent). Among participants who were homozygous for the C282Y mutation but in whom iron overload had not been diagnosed (227 participants), serum ferritin levels were greater than 300 mug per liter in 78 of 89 men (88 percent) and greater than 200 microg per liter in 79 of 138 women (57 percent). Pacific Islanders and Asians had the highest geometric mean levels of serum ferritin and mean transferrin saturation despite having the lowest prevalence of C282Y homozygotes. There were 364 participants in whom iron overload had not been diagnosed (29 C282Y homozygotes) who had a serum ferritin level greater than 1000 microg per liter. Among men, C282Y homozygotes and compound heterozygotes were more likely to report a history of liver disease than were participants without HFE mutations. The C282Y mutation is most common in whites, and most C282Y homozygotes have elevations in serum ferritin levels and transferrin saturation. The C282Y mutation does not account for high mean serum ferritin levels and transferrin saturation values in nonwhites. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Large-Scale Gene-Centric Meta-Analysis across 39 Studies Identifies Type 2 Diabetes Loci

            To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination.

              Ferroportin exports iron into plasma from absorptive enterocytes, erythrophagocytosing macrophages, and hepatic stores. The hormone hepcidin controls cellular iron export and plasma iron concentrations by binding to ferroportin and causing its internalization and degradation. We explored the mechanism of hepcidin-induced endocytosis of ferroportin, the key molecular event in systemic iron homeostasis. Hepcidin binding caused rapid ubiquitination of ferroportin in cell lines overexpressing ferroportin and in murine bone marrow-derived macrophages. No hepcidin-dependent ubiquitination was observed in C326S ferroportin mutant which does not bind hepcidin. Substitutions of lysines between residues 229 and 269 in the third cytoplasmic loop of ferroportin prevented hepcidin-dependent ubiquitination and endocytosis of ferroportin, and promoted cellular iron export even in the presence of hepcidin. The human ferroportin mutation K240E, previously associated with clinical iron overload, caused hepcidin resistance in vitro by interfering with ferroportin ubiquitination. Our study demonstrates that ubiquitination is the functionally relevant signal for hepcidin-induced ferroportin endocytosis. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Diabetes Res
                J Diabetes Res
                JDR
                Journal of Diabetes Research
                Hindawi Publishing Corporation
                2314-6745
                2314-6753
                2017
                26 February 2017
                : 2017
                : 9826930
                Affiliations
                1Southern Iron Disorders Center, Birmingham, AL 35209, USA
                2Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
                3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
                Author notes
                *James C. Barton: ironmd@ 123456isp.com

                Academic Editor: Bernard Portha

                Author information
                http://orcid.org/0000-0003-2876-8276
                Article
                10.1155/2017/9826930
                5346371
                28331855
                6d388440-9997-4cec-a49b-e9b5e0dccb42
                Copyright © 2017 James C. Barton and Ronald T. Acton.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 September 2016
                : 12 December 2016
                : 4 January 2017
                Funding
                Funded by: Southern Iron Disorders Center
                Categories
                Review Article

                Comments

                Comment on this article