10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IONP-doped nanoparticles for highly effective NIR-controlled drug release and combination tumor therapy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite advances in controlled drug delivery, drug delivery systems (DDSs) with controlled activated drug release and high spatial and temporal resolution are still required. Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. In this study, a near-infrared light-controlled “off–on” DDS with magnetic resonance imaging and magnetic targeting properties was developed using a hybrid nanoplatform (carbon nanotubes [CNTs]-iron oxide nanoparticle). Doxorubicin (DOX) and distearoyl- sn-glycero-3-phosphoethanolamine-PEG were adsorbed onto CNTs-iron oxide nanoparticle, and then to avoid the unexpected drug release during circulation, 1-myristyl alcohol was used to encapsulate the CNTs–drug complex. Herein, multifunctional DOX-loaded nanoparticles (NPs) with “off–on” state were developed. DOX-NPs showed an obvious “off–on” effect (temperature increase, drug release) controlled by near-infrared light in vitro and in vivo. In the in vivo and in vitro studies, DOX-NPs exhibited excellent magnetic resonance imaging ability, magnetic targeting property, high biosafety, and high antitumor combined therapeutic efficacy (hyperthermia combined with chemotherapy). These results highlight the great potential of DOX-NPs in the treatment of cancer.

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy.

          Because of the aggressive and recurrent nature of cancers, repeated and multimodal treatments are often necessary. Traditional cancer therapies have a risk of serious toxicity and side effects. Hence, it is crucial to develop an alternative treatment modality that is minimally invasive, effectively treats cancers with low toxicity, and can be repeated as required. We developed a light-activatable microneedle (MN) system that can repeatedly and simultaneously provide photothermal therapy and chemotherapy to superficial tumors and exert synergistic anticancer effects. This system consists of embeddable polycaprolactone MNs containing a photosensitive nanomaterial (lanthanum hexaboride) and an anticancer drug (doxorubicin; DOX), and a dissolvable poly(vinyl alcohol)/polyvinylpyrrolidone supporting array patch. Because of this supporting array, the MNs can be completely inserted into the skin and embedded within the target tissue for locoregional cancer treatment. When exposed to near-infrared light, the embedded MN array uniformly heats the target tissue to induce a large thermal ablation area and then melts at 50 °C to release DOX in a broad area, thus destroying tumors. This light-activated heating and releasing behavior can be precisely controlled and switched on and off on demand for several cycles. We demonstrated that the MN-mediated synergistic therapy completely eradicated 4T1 tumors within 1 week after a single application of the MN and three cycles of laser treatment. No tumor recurrence and no significant body weight loss of mice were observed. Thus, the developed light-activatable MN with a unique embeddable feature offers an effective, user-friendly, and low-toxicity option for patients requiring long-term and multiple cancer treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            pH-Responsive copolymer assemblies for controlled release of doxorubicin.

            pH-Responsive drug carriers have the potential to provide selective drug release at therapeutic targets including tumors and in acidic intracellular vesicles such as endosomes and lysosomes. We have developed a new approach to the design of acid-sensitive micelles by incorporating hydrophobic acetal groups on the core block of a micelle-forming block copolymer. Hydrolysis of the acetals at mildly acidic pH is designed to reveal polar groups on the core-forming block, thus changing its solubility and disrupting the micelle, triggering drug release. The anticancer drug doxorubicin (DOX) was encapsulated in these pH-sensitive micelles, and the acetal hydrolysis rates and DOX release rates were determined in the pH range of 4.0 to 7.4 and were compared to those of control systems. The micelle disruption was investigated by dynamic light scattering. The in vitro toxicities of the empty and DOX-loaded micelles were determined, and the intracellular fate of the encapsulated DOX was compared to free DOX using fluorescence confocal microscopy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone.

              On demand release of anti-inflammatory drug or neurotropic factors have great promise for maintaining a stable chronic neural interface. Here we report the development of an electrically controlled drug release system based on conducting polymer and carbon nanotubes. Drug delivery research using carbon nanotubes (CNTs) has taken advantage of the ability of CNTs to load large amounts of drug molecules on their outer surface. However, the utility of the inner cavity of CNTs, which can increase the drug loading capacity, has not yet been explored. In this paper, the use of multi-wall CNTs as nanoreserviors for drug loading and controlled release is demonstrated. The CNTs are pretreated with acid sonication to open their ends and make their outer and inner surfaces more hydrophilic. When dispersed and sonicated in a solution containing the anti-inflammatory drug dexamethasone, experiments show that the pretreated CNTs are filled with the drug solution. To prevent the unwanted release of the drug, the open ends of the drug-filled CNTs are then sealed with polypyrrole (PPy) films formed through electropolymerization. The prepared electrode coating significantly reduced the electrode impedance, which is desired for neural recording and stimulation. More importantly, the coating can effectively store drug molecules and release the bioactive drug in a controlled manner using electrical stimulation. The dexamethasone released from the PPy/CNT film was able to reduce lipopolysaccharide induced microglia activation to the same degree as the added dexamethasone. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                16 May 2017
                : 12
                : 3751-3766
                Affiliations
                [1 ]The Fifth Affiliated Hospital of Zhengzhou University
                [2 ]School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
                Author notes
                Correspondence: Yanyan Zhang, School of Basic Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People’s Republic of China, Email fxd1064@ 123456126.com
                Article
                ijn-12-3751
                10.2147/IJN.S113963
                5440031
                6d3b6926-c65b-480e-bd91-b5f5a0cd3fd9
                © 2017 Fu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                controlled drug release,magnetic targeting,mri,combination therapy
                Molecular medicine
                controlled drug release, magnetic targeting, mri, combination therapy

                Comments

                Comment on this article