2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      IL-1β Induces Pathologically Activated Osteoclasts Bearing Extremely High Levels of Resorbing Activity: A Possible Pathological Subpopulation of Osteoclasts, Accompanied by Suppressed Expression of Kindlin-3 and Talin-1

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As osteoclasts have the central roles in normal bone remodeling, it is ideal to regulate only the osteoclasts performing pathological bone destruction without affecting normal osteoclasts. Based on a hypothesis that pathological osteoclasts form under the pathological microenvironment of the bone tissues, we here set up optimum culture conditions to examine the entity of pathologically activated osteoclasts (PAOCs). Through searching various inflammatory cytokines and their combinations, we found the highest resorbing activity of osteoclasts when osteoclasts were formed in the presence of M-CSF, receptor activator of NF-κB ligand, and IL-1β. We have postulated that these osteoclasts are PAOCs. Analysis using confocal laser microscopy revealed that PAOCs showed extremely high proton secretion detected by the acid-sensitive fluorescence probe Rh-PM and bone resorption activity compared with normal osteoclasts. PAOCs showed unique morphology bearing high thickness and high motility with motile cellular processes in comparison with normal osteoclasts. We further examined the expression of Kindlin-3 and Talin-1, essential molecules for activating integrin β-chains. Although normal osteoclasts express high levels of Kindlin-3 and Talin-1, expression of these molecules was markedly suppressed in PAOCs, suggesting the abnormality in the adhesion property. When whole membrane surface of mature osteoclasts was biotinylated and analyzed, the IL-1β-induced cell surface protein was detected. PAOCs could form a subpopulation of osteoclasts possibly different from normal osteoclasts. PAOC-specific molecules could be an ideal target for regulating pathological bone destruction.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue biology perspective on macrophages.

          Macrophages are essential components of mammalian tissues. Although historically known mainly for their function in host defense and the clearance of apoptotic cells, macrophages are now increasingly recognized as serving many roles in tissue development, homeostasis and repair. In addition, tissue-resident macrophages have many tissue-specific functional characteristics, which are a reflection of distinct gene-expression programs. Here we discuss the emerging views of macrophage biology from evolutionary, developmental and homeostatic perspectives.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanisms of Bone Resorption in Periodontitis

            Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes.

              A long-term goal of cancer diagnosis is to develop tumor-imaging techniques that have sufficient specificity and sensitivity. To achieve this goal, minimizing the background signal originating from nontarget tissues is crucial. Here we achieve highly specific in vivo cancer visualization by using a newly designed targeted 'activatable' fluorescent imaging probe. This agent is activated after cellular internalization by sensing the pH change in the lysosome. Novel acidic pH-activatable probes based on the boron-dipyrromethene fluorophore were synthesized and then conjugated to a cancer-targeting monoclonal antibody. As proof of concept, ex vivo and in vivo imaging of human epidermal growth factor receptor type 2-positive lung cancer cells in mice was performed. The probe was highly specific for tumors with minimal background signal. Furthermore, because the acidic pH in lysosomes is maintained by the energy-consuming proton pump, only viable cancer cells were successfully visualized. The design concept can be widely adapted to cancer-specific, cell surface-targeting molecules that result in cellular internalization.
                Bookmark

                Author and article information

                Journal
                The Journal of Immunology
                J.I.
                The American Association of Immunologists
                0022-1767
                1550-6606
                December 18 2017
                January 01 2018
                January 01 2018
                November 15 2017
                : 200
                : 1
                : 218-228
                Article
                10.4049/jimmunol.1602035
                29141864
                6d453f6f-ba1c-401e-a03d-14380ba97740
                © 2017
                History

                Comments

                Comment on this article