9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans ( C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 μg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 ×10 3; 1.4 ×10 3; 3.45 ×10 3, and 3.74 ×10 3 CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans.

          MIC end points for the most commonly prescribed azole antifungal drug, fluconazole, can be difficult to determine because its fungistatic nature can lead to excessive "trailing" of growth during susceptibility testing by National Committee for Clinical Laboratory Standards broth macrodilution and microdilution methods. To overcome this ambiguity, and because fluconazole acts by inhibiting ergosterol biosynthesis, we developed a novel method to differentiate fluconazole-susceptible from fluconazole-resistant isolates by quantitating ergosterol production in cells grown in 0, 1, 4, 16, or 64 microg of fluconazole per ml. Ergosterol was isolated from whole yeast cells by saponification, followed by extraction of nonsaponifiable lipids with heptane. Ergosterol was identified by its unique spectrophotometric absorbance profile between 240 and 300 nm. We used this sterol quantitation method (SQM) to test 38 isolates with broth microdilution end points of /=64 microg/ml (resistant) and 10 isolates with trailing end points by the broth microdilution method. No significant differences in mean ergosterol content were observed between any of the isolates grown in the absence of fluconazole. However, 18 susceptible isolates showed a mean reduction in ergosterol content of 72% after exposure to 1 microg of fluconazole/ml, an 84% reduction after exposure to 4 microg/ml, and 95 and 100% reductions after exposure to 16 and 64 microg of fluconazole/ml, respectively. Ten SDD isolates showed mean ergosterol reductions of 38, 57, 73, and 99% after exposure to 1, 4, 16, and 64 microg of fluconazole/ml, respectively. In contrast, 10 resistant isolates showed mean reductions in ergosterol content of only 25, 38, 53, and 84% after exposure to the same concentrations of fluconazole. The MIC of fluconazole, by using the SQM, was defined as the lowest concentration of the drug which resulted in 80% or greater inhibition of overall mean ergosterol biosynthesis compared to that in the drug-free control. Of 38 isolates which gave clear end points by the broth microdilution method, the SQM MIC was within 2 dilutions of the broth microdilution MIC for 33 (87%). The SQM also discriminated between resistant and highly resistant isolates and was particularly useful for discerning the fluconazole susceptibilities of 10 additional isolates which gave equivocal end points by the broth microdilution method due to trailing growth. In contrast to the broth microdilution method, the SQM determined trailing isolates to be susceptible rather than resistant, indicating that the SQM may predict clinical outcome more accurately. The SQM may provide a means to enhance current methods of fluconazole susceptibility testing and may provide a better correlation of in vitro with in vivo results, particularly for isolates with trailing end points.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological implications of sterol biosynthesis in yeast.

            Fungi are among the most primitive organisms that synthesize sterols. The fungal sterol, ergosterol, is similar to animal sterol, cholesterol, but with significant structural differences. The genetics and biochemistry for most of the steps in sterol biosynthesis have been studied in the yeast, Saccharomyces cerevisiae. Yet, little is known of the precise physiological roles that sterols play in the cell. Work with strains that are auxotrophic for ergosterol has led to the prediction of at least four growth-dependent functions for sterols. Most of the antifungal compounds in medical and agricultural use affect some aspect of sterol synthesis or function. Extensive studies on the modes of action of those substances and research on the effects of altering sterol metabolism by sterol mutants are providing new insights into sterol functions in the cells. In addition, questioning why fungi require ergosterol rather than the simpler cholesterol provides heuristic impetus for further experimentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation.

              Although several studies have shown that chlorhexidine digluconate (CHX) has bactericidal activity against periodontal pathogens and exerts toxic effects on periodontal tissues, few have been directed to evaluate the mechanisms underlying its adverse effects on these tissues. Therefore, the aim of the present study was to investigate the in vitro cytotoxicity of CHX on cells that could represent common targets for its action in the surgical procedures for the treatment of periodontitis and peri-implantitis and to elucidate its mechanisms of action. Osteoblastic, endothelial and fibroblastic cell lines were exposed to various concentrations of CHX for different times and assayed for cell viability and cell death. Also analysis of mitochondrial membrane potential, intracellular Ca2+ mobilization and reactive oxygen species (ROS) generation were done in parallel, to correlate CHX-induced cell damage with alterations in key parameters of cell homeostasis. CHX affected cell viability in a dose and time-dependent manners, particularly in osteoblasts. Its toxic effect consisted in the induction of apoptotic and autophagic/necrotic cell deaths and involved disturbance of mitochondrial function, intracellular Ca2+ increase and oxidative stress. These data suggest that CHX is highly cytotoxic in vitro and invite to a more cautioned use of the antiseptic in the oral surgical procedures.
                Bookmark

                Author and article information

                Journal
                Braz J Microbiol
                Braz. J. Microbiol
                bjm
                bjm
                Brazilian Journal of Microbiology
                Sociedade Brasileira de Microbiologia
                1517-8382
                1678-4405
                Apr-Jun 2012
                1 June 2012
                : 43
                : 2
                : 810-818
                Affiliations
                [1 ]Faculdade de Odontologia, Departamento de Odontologia Restauradora, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brasil
                [2 ]Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brasil
                Author notes
                * Corresponding Author. Mailing address: Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil.Departamento de Odontologia Restauradora, Universidade Federal de Minas Gerais. CEP: 31270-901.; Tel.: 55-31-34092437 Fax: 55-31-3409-2430.; E-mail: mecortes@ 123456ufmg.br
                Article
                S1517-83822012000200047
                10.1590/S1517-83822012000200047
                3768818
                24031894
                6ee8ad7c-5c8e-4e5d-9387-c9f84161df63
                © Sociedade Brasileira de Microbiologia

                All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License

                History
                : 08 September 2010
                : 03 February 2011
                : 07 June 2012
                Categories
                Microbial Physiology
                Research Paper

                chlorhexidine,β-cyclodextrin,membrane-drug interactions

                Comments

                Comment on this article