25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between Residential Proximity to Fuel-Fired Power Plants and Hospitalization Rate for Respiratory Diseases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Air pollution is known to cause respiratory disease. Unlike motor vehicle sources, fuel-fired power plants are stationary.

          Objective: Using hospitalization data, we examined whether living near a fuel-fired power plant increases the likelihood of hospitalization for respiratory disease.

          Methods: Rates of hospitalization for asthma, acute respiratory infection (ARI), and chronic obstructive pulmonary disease (COPD) were estimated using hospitalization data for 1993–2008 from New York State in relation to data for residences near fuel-fired power plants. We also explored data for residential proximity to hazardous waste sites.

          Results: After adjusting for age, sex, race, median household income, and rural/urban residence, there were significant 11%, 15%, and 17% increases in estimated rates of hospitalization for asthma, ARI, and COPD, respectively, among individuals > 10 years of age living in a ZIP code containing a fuel-fired power plant compared with one that had no power plant. Living in a ZIP code with a fuel-fired power plant was not significantly associated with hospitalization for asthma or ARI among children < 10 years of age. Living in a ZIP code with a hazardous waste site was associated with hospitalization for all outcomes in both age groups, and joint effect estimates were approximately additive for living in a ZIP code that contained a fuel-fired power plant and a hazardous waste site.

          Conclusions: Our results are consistent with the hypothesis that exposure to air pollution from fuel-fired power plants and volatile compounds coming from hazardous waste sites increases the risk of hospitalization for respiratory diseases.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach.

          The APHEA 2 project investigated short-term health effects of particles in eight European cities. In each city associations between particles with an aerodynamic diameter of less than 10 microm (PM(10)) and black smoke and daily counts of emergency hospital admissions for asthma (0-14 and 15-64 yr), chronic obstructive pulmonary disease (COPD), and all-respiratory disease (65+ yr) controlling for environmental factors and temporal patterns were investigated. Summary PM(10) effect estimates (percentage change in mean number of daily admissions per 10 microg/m(3) increase) were asthma (0-14 yr) 1.2% (95% CI: 0.2, 2.3), asthma (15-64 yr) 1.1% (0.3, 1.8), and COPD plus asthma and all-respiratory (65+ yr) 1.0% (0.4, 1.5) and 0.9% (0.6, 1.3). The combined estimates for Black Smoke tended to be smaller and less precisely estimated than for PM(10). Variability in the sizes of the PM(10) effect estimates between cities was also investigated. In the 65+ groups PM(10) estimates were positively associated with annual mean concentrations of ozone in the cities. For asthma admissions (0-14 yr) a number of city-specific factors, including smoking prevalence, explained some of their variability. This study confirms that particle concentrations in European cities are positively associated with increased numbers of admissions for respiratory diseases and that some of the variation in PM(10) effect estimates between cities can be explained by city characteristics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Effect of Particulate Air Pollution on Emergency Admissions for Myocardial Infarction: A Multicity Case-Crossover Analysis

            Recently, attention has focused on whether particulate air pollution is a specific trigger of myocardial infarction (MI). The results of several studies of single locations assessing the effects of ambient particular matter on the risk of MI have been disparate. We used a multicity case-crossover study to examine risk of emergency hospitalization associated with fine particulate matter (PM) with aerodynamic diameter 300,000 MIs during 1985–1999 among elderly residents of 21 U.S. cities. We used time-stratified controls matched on day of the week or on temperature to detect possible residual confounding by weather. Overall, we found a 0.65% [95% confidence interval (CI), 0.3–1.0%] increased risk of hospitalization for MI per 10 μg/m3 increase in ambient PM10 concentration. Matching on apparent temperature yielded a 0.64% increase in risk (95% CI, 0.1–1.2%). We found that the effect size for PM10 doubled for subjects with a previous admission for chronic obstructive pulmonary disease or a secondary diagnosis of pneumonia, although these differences did not achieve statistical significance. There was a weaker indication of a larger effect on males but no evidence of effect modification by age or the other diagnoses. We also found that the shape of the exposure–response relationship between MI hospitalizations and PM10 is almost linear, but with a steeper slope at levels of PM10 < 50 μg/m3. We conclude that increased concentrations of ambient PM10 are associated with increased risk of MI among the elderly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prenatal Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Children’s Intelligence at 5 Years of Age in a Prospective Cohort Study in Poland

              Background In this prospective cohort study of Caucasian mothers and children in Krakow, Poland, we evaluated the role of prenatal exposure to urban air pollutants in the pathogenesis of neurobehavioral disorders. Objectives The objective of this study was to investigate the relationship between prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child intelligence at 5 years of age, controlling for potential confounders suspected to play a role in neurodevelopment. Methods A cohort of pregnant, healthy, nonsmoking women was enrolled in Krakow, Poland, between 2001 and 2006. During pregnancy, participants were invited to complete a questionnaire and undergo 48-hr personal air monitoring to estimate their babies’ exposure, and to provide a blood sample and/or a cord blood sample at the time of delivery. Two hundred fourteen children were followed through 5 years of age, when their nonverbal reasoning ability was assessed using the Raven Coloured Progressive Matrices (RCPM). Results We found that higher (above the median of 17.96 ng/m3) prenatal exposure to airborne PAHs (range, 1.8–272.2 ng/m3) was associated with decreased RCPM scores at 5 years of age, after adjusting for potential confounding variables (n = 214). Further adjusting for maternal intelligence, lead, or dietary PAHs did not alter this association. The reduction in RCPM score associated with high airborne PAH exposure corresponded to an estimated average decrease of 3.8 IQ points. Conclusions These results suggest that prenatal exposure to airborne PAHs adversely affects children’s cognitive development by 5 years of age, with potential implications for school performance. They are consistent with a recent finding in a parallel cohort in New York City.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                27 February 2012
                June 2012
                : 120
                : 6
                : 807-810
                Affiliations
                [1 ]Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
                [2 ]Institute for Health and the Environment, University at Albany, State University of New York, Rensselaer, New York, USA
                Author notes
                Address correspondence to D.O. Carpenter, Institute for Health and the Environment, University at Albany–SUNY, 5 University Place, Rensselaer, NY 12144 USA. Telephone: (518) 525-2660. Fax: (518) 525-2665. E-mail: dcarpenter@ 123456albany.edu
                Article
                ehp.1104146
                10.1289/ehp.1104146
                3385425
                22370087
                6f535ccb-455b-42ca-aea4-02420afaf688
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 June 2011
                : 27 February 2012
                Categories
                Research

                Public health
                so2,asthma,copd,particulates,respiratory infection
                Public health
                so2, asthma, copd, particulates, respiratory infection

                Comments

                Comment on this article