63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Clostridium difficile toxins A and B are primarily responsible for symptoms of C. difficile associated disease and are prime targets for vaccine development. We describe a plasmid-based system for the production of genetically modified toxins in a non-sporulating strain of C. difficile that lacks the toxin genes tcdA and tcdB. TcdA and TcdB mutations targeting established glucosyltransferase cytotoxicity determinants were introduced into recombinant plasmids and episomally expressed toxin mutants purified from C. difficile transformants. TcdA and TcdB mutants lacking glucosyltransferase and autoproteolytic processing activities were ~10 000-fold less toxic to cultured human IMR-90 cells than corresponding recombinant or native toxins. However, both mutants retained residual cytotoxicity that could be prevented by preincubating the antigens with specific antibodies or by formalin treatment. Such non-toxic formalin-treated mutant antigens were immunogenic and protective in a hamster model of infection. The remaining toxicity of untreated TcdA and TcdB mutant antigens was associated with cellular swelling, a phenotype consistent with pore-induced membrane leakage. TcdB substitution mutations previously shown to block vesicular pore formation and toxin translocation substantially reduced residual toxicity. We discuss the implications of these results for the development of a C. difficile toxoid vaccine.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The ClosTron: a universal gene knock-out system for the genus Clostridium.

          Progress in exploiting clostridial genome information has been severely impeded by a general lack of effective methods for the directed inactivation of specific genes. Those few mutants that have been generated have been almost exclusively derived by single crossover integration of a replication-deficient or defective plasmid by homologous recombination. The mutants created are therefore unstable. Here we have adapted a mutagenesis system based on the mobile group II intron from the ltrB gene of Lactococcus lactis (Ll.ltrB) to function in clostridial hosts. Integrants are readily selected on the basis of acquisition of resistance to erythromycin, and are generated from start to finish in as little as 10 to 14 days. Unlike single crossover plasmid integrants, the mutants are extremely stable. The system has been used to make 6 mutants of Clostridium acetobutylicum and 5 of Clostridium difficile, exceeding the number of published mutants ever generated in these species. Genes have also been inactivated for the first time in Clostridium botulinum and Clostridium sporogenes, suggesting the system will be universally applicable to the genus. The procedure is highly efficient and reproducible, and should revolutionize functional genomic studies in clostridia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Treatment with monoclonal antibodies against Clostridium difficile toxins.

            New therapies are needed to manage the increasing incidence, severity, and high rate of recurrence of Clostridium difficile infection. We performed a randomized, double-blind, placebo-controlled study of two neutralizing, fully human monoclonal antibodies against C. difficile toxins A (CDA1) and B (CDB1). The antibodies were administered together as a single infusion, each at a dose of 10 mg per kilogram of body weight, in patients with symptomatic C. difficile infection who were receiving either metronidazole or vancomycin. The primary outcome was laboratory-documented recurrence of infection during the 84 days after the administration of monoclonal antibodies or placebo. Among the 200 patients who were enrolled (101 in the antibody group and 99 in the placebo group), the rate of recurrence of C. difficile infection was lower among patients treated with monoclonal antibodies (7% vs. 25%; 95% confidence interval, 7 to 29; P<0.001). The recurrence rates among patients with the epidemic BI/NAP1/027 strain were 8% for the antibody group and 32% for the placebo group (P=0.06); among patients with more than one previous episode of C. difficile infection, recurrence rates were 7% and 38%, respectively (P=0.006). The mean duration of the initial hospitalization for inpatients did not differ significantly between the antibody and placebo groups (9.5 and 9.4 days, respectively). At least one serious adverse event was reported by 18 patients in the antibody group and by 28 patients in the placebo group (P=0.09). The addition of monoclonal antibodies against C. difficile toxins to antibiotic agents significantly reduced the recurrence of C. difficile infection. (ClinicalTrials.gov number, NCT00350298.) 2010 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A modular system for Clostridium shuttle plasmids.

              Despite their medical and industrial importance, our basic understanding of the biology of the genus Clostridium is rudimentary in comparison to their aerobic counterparts in the genus Bacillus. A major contributing factor has been the comparative lack of sophistication in the gene tools available to the clostridial molecular biologist, which are immature, and in clear need of development. The transfer and maintenance of recombinant, replicative plasmids into various species of Clostridium has been reported, and several elements suitable as shuttle plasmid components are known. However, these components have to-date only been available in disparate plasmid contexts, and their use has not been broadly explored. Here we describe the specification, design and construction of a standardized modular system for Clostridium-Escherichia coli shuttle plasmids. Existing replicons and selectable markers were incorporated, along with a novel clostridial replicon. The properties of these components were compared, and the data allow researchers to identify combinations of components potentially suitable for particular hosts and applications. The system has been extensively tested in our laboratory, where it is utilized in all ongoing recombinant work. We propose that adoption of this modular system as a standard would be of substantial benefit to the Clostridium research community, whom we invite to use and contribute to the system.
                Bookmark

                Author and article information

                Journal
                Microbiology
                Microbiology (Reading, Engl.)
                Micro
                mic
                Microbiology
                Society for General Microbiology
                1350-0872
                1465-2080
                July 2013
                July 2013
                : 159
                : Pt 7
                : 1254-1266
                Affiliations
                [1 ]Pfizer Vaccine Research, Pearl River, NY 10654, USA
                [2 ]Centers for Disease Control, 1600 Clifton Rd, Atlanta, GA 30333, USA
                [3 ]Clostridia Research Group, NIHR Biomedical Research Unit in GI Disease, University Park, University of Nottingham, Nottingham NG7 2RD, UK
                Author notes
                Correspondence Robert G. K. Donald robert.donald@ 123456pfizer.com
                Article
                066712
                10.1099/mic.0.066712-0
                3749728
                23629868
                6f940505-675e-4801-b42a-c6f6594b14b9
                © 2013 SGM

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 February 2013
                : 19 April 2013
                Categories
                Standard
                Synthetic Biology
                Custom metadata
                free

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article