34
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monoaminergic Antidepressants in the Relief of Pain: Potential Therapeutic Utility of Triple Reuptake Inhibitors (TRIs)

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over 75% of depressed patients suffer from painful symptoms predicting a greater severity and a less favorable outcome of depression. Imaging, anatomical and functional studies have demonstrated the existence of common brain structures, neuronal pathways and neurotransmitters in depression and pain. In particular, the ascending serotonergic and noradrenergic pathways originating from the raphe nuclei and the locus coeruleus; respectively, send projections to the limbic system. Such pathways control many of the psychological functions that are disturbed in depression and in the perception of pain. On the other hand, the descending pathways, from monoaminergic nuclei to the spinal cord, are specifically implicated in the inhibition of nociception providing rationale for the use of serotonin (5-HT) and/or norepinephrine (NE) reuptake inhibitors (SSRIs, NRIs, SNRIs), in the relief of pain. Compelling evidence suggests that dopamine (DA) is also involved in the pathophysiology and treatment of depression. Indeed, recent insights have demonstrated a central role for DA in analgesia through an action at both the spinal and suprasinal levels including brain regions such as the periaqueductal grey (PAG), the thalamus, the basal ganglia and the limbic system. In this context, dopaminergic antidepressants ( i.e., containing dopaminergic activity), such as bupropion, nomifensine and more recently triple reuptake inhibitors (TRIs), might represent new promising therapeutic tools in the treatment of painful symptoms with depression. Nevertheless, whether the addition of the dopaminergic component produces more robust effects than single- or dual-acting agents, has yet to be demonstrated. This article reviews the main pathways regulating pain transmission in relation with the monoaminergic systems. It then focuses on the current knowledge regarding the in vivo pharmacological properties and mechanism of action of monoaminergic antidepressants including SSRIs, NRIs, SNRIs and TRIs. Finally, a synthesis of the preclinical studies supporting the efficacy of these antidepressants in analgesia is also addressed in order to highlight the relative contribution of 5-HT, NE and DA to nociception.

          Related collections

          Most cited references370

          • Record: found
          • Abstract: found
          • Article: not found

          Descending control of pain.

          Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.

            The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of chronic ECS treatment (10 d). In the hippocampus, the influence of chronic ECS varied between the major subfields. In the dentate gyrus granule cell layer, chronic ECS decreased the acute induction of BDNF and trkB mRNA by approximately 50%, but prolonged their expression: levels remained elevated two- to threefold 18 hr later after the last chronic ECS treatment, but returned to control 18 hr after acute ECS. In CA3 and CA1 pyramidal cell layers, chronic ECS significantly elevated the acute induction of BDNF, and tended to prolong the expression of BDNF and trkB mRNA. A similar effect was observed in layer 2 of the piriform cortex, where chronic ECS significantly increased the acute induction and prolonged the expression of BDNF and trkB mRNA. Chronic (21 d), but not acute (1 d), administration of several different antidepressant drugs, including tranylcypromine, sertraline, desipramine, or mianserin, significantly increased BDNF mRNA and all but mianserin increased trkB mRNA in hippocampus. In contrast, chronic administration of nonantidepressant psychotropic drugs, including morphine, cocaine, or haloperidol, did not increase levels of BDNF mRNA. Furthermore, chronic administration of ECS or antidepressant drugs completely blocked the down-regulation of BDNF mRNA in the hippocampus in response to restraint stress. The enhanced induction and prolonged expression of BDNF in response to chronic ECS and antidepressant drug treatments could promote neuronal survival, and protect neurons from the damaging effects of stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The amygdala and persistent pain.

              A reciprocal relationship exists between persistent pain and negative affective states such as fear, anxiety, and depression. Accumulating evidence points to the amygdala as an important site of such interaction. Whereas a key role of the amygdala in the neuronal mechanisms of emotionality and affective disorders has been well established, the concept of the amygdala as an important contributor to pain and its emotional component is still emerging. This article will review and discuss evidence from anatomical, neuroimaging, behavioral, electrophysiological, pharmacological, and biochemical data that implicate the amygdala in pain modulation and emotional responses to pain. The latero-capsular division of the central nucleus of the amygdala is now defined as the "nociceptive amygdala" and integrates nociceptive information with poly-modal information about the internal and external bodily environment. Dependent on environmental conditions and affective states, the amygdala appears to play a dual facilitatory and inhibitory role in the modulation of pain behavior and nociceptive processing at different levels of the pain neuraxis. Only recently, electrophysiological, pharmacological, and biochemical neuroplastic changes were shown in the nociceptive amygdala in persistent pain. It is conceivable, however, that amygdala plasticity plays an important role in emotional pain behavior and its modulation by affective state.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                Pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                February 2011
                26 January 2011
                : 4
                : 2
                : 285-342
                Affiliations
                Faculty of Pharmacy, EA 3544, University of Paris XI, Châtenay-Malabry cedex F-92296, France
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: guillaum.hache@ 123456gmail.com ; Tel.: 011-331-46-83-53-61.
                Article
                pharmaceuticals-04-00285
                10.3390/ph4020285
                4053958
                6f9a8789-d8b2-4f4e-b322-209c23c24a7c
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 22 November 2010
                : 10 January 2011
                : 21 January 2011
                Categories
                Review

                antidepressant,serotonin,norepinephrine,dopamine,monoamine transporters,mood disorders,pain,ssri,nri,snri,triple reuptake inhibitors

                Comments

                Comment on this article