1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of sigma-1 receptor and brain-derived neurotrophic factor in the development of diabetes and comorbid depression in streptozotocin-induced diabetic rats

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A neurotrophic model for stress-related mood disorders.

          There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Behavioural despair in rats: a new model sensitive to antidepressant treatments.

            Rats when forced to swim in a cylinder from which they cannot escape will, after an initial period of vigorous activity, adopt a characteristic immobile posture which can be readily identified. Immobility was reduced by various clinically effective antidepressant drugs at doses which otherwise decreased spontaneous motor activity in an open field. Antidepressants could thus be distinguished from psychostimulants which decreased immobility at doses which increased general activity. Anxiolytic compounds did not affect immobility whereas major tranquilisers enhanced it. Immobility was also reduced by electroconvulsive shock, REM sleep deprivation and "enrichment" of the environment. It was concluded that immobility reflects a state of lowered mood in the rat which is selectively sensitive to antidepressant treatments. Positive findings with atypical antidepressant drugs such as iprindole and mianserin suggest that the method may be capable of discovering new antidepressants hitherto undetectable with classical pharmacological tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival.

              Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.
                Bookmark

                Author and article information

                Journal
                Psychopharmacology
                Psychopharmacology
                Springer Science and Business Media LLC
                0033-3158
                1432-2072
                April 2016
                January 26 2016
                April 2016
                : 233
                : 7
                : 1269-1278
                Article
                10.1007/s00213-016-4209-x
                6fa191dd-20bc-4c12-9652-d7820dd041e3
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article