9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A salty landscape of fear: responses of fish and zooplankton to freshwater salinization and predatory stress

      ,
      Oecologia
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Increased salinization of fresh water in the northeastern United States.

          Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations of up to 25% of the concentration of seawater in streams of Maryland, New York, and New Hampshire during winters, and chloride concentrations remaining up to 100 times greater than unimpacted forest streams during summers. Mean annual chloride concentration increased as a function of impervious surface and exceeded tolerance for freshwater life in suburban and urban watersheds. Our analysis shows that if salinity were to continue to increase at its present rate due to changes in impervious surface coverage and current management practices, many surface waters in the northeastern United States would not be potable for human consumption and would become toxic to freshwater life within the next century.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity

            Environmental pollutants such as metals, pesticides, and other organics pose serious risks to many aquatic organisms. Accordingly, a great deal of previous research has characterized physiological mechanisms of toxicity in animals exposed to contaminants. In contrast, effects of contaminants on fish behaviour are less frequently studied. Because behaviour links physiological function with ecological processes, behavioural indicators of toxicity appear ideal for assessing the effects of aquatic pollutants on fish populations. Here we consider the many toxicants that disrupt complex fish behaviours, such as predator avoidance, reproductive, and social behaviours. Toxicant exposure often completely eliminates the performance of behaviours that are essential to fitness and survival in natural ecosystems, frequently after exposures of lesser magnitude than those causing significant mortality. Unfortunately, the behavioural toxicity of many xenobiotics is still unknown, warranting their future study. Physiological effects of toxicants in the literature include disruption of sensory, hormonal, neurological, and metabolic systems, which are likely to have profound implications for many fish behaviours. However, little toxicological research has sought to integrate the behavioural effects of toxicants with physiological processes. Those studies that take this multidisciplinary approach add important insight into possible mechanisms of behavioural alteration. The most commonly observed links with behavioural disruption include cholinesterase (ChE) inhibition, altered brain neurotransmitter levels, sensory deprivation, and impaired gonadal or thyroid hormone levels. Even less frequently studied are the implications of interrelated changes in behaviour and physiology caused by aquatic pollutants for fish populations. We conclude that future integrative, multidisciplinary research is clearly needed to increase the significance and usefulness of behavioural indicators for aquatic toxicology, and aim to highlight specific areas for consideration. Copyright 2004 Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invasive species triggers a massive loss of ecosystem services through a trophic cascade.

              Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy.
                Bookmark

                Author and article information

                Journal
                Oecologia
                Oecologia
                Springer Nature
                0029-8549
                1432-1939
                September 2017
                July 31 2017
                September 2017
                : 185
                : 1
                : 147-156
                Article
                10.1007/s00442-017-3925-1
                28762176
                6fba5d0a-289c-4435-8204-94c37a87ac3c
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article