13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial therapy has provided the main component of chemotherapy against bacterial pathogens. The effectiveness of this strategy has, however, been increasingly challenged by the emergence of antimicrobial resistance which now threatens the sustained utility of this approach. Humans and animals are constantly exposed to bacteria and have developed effective strategies to control pathogens involving innate and adaptive immune responses. Impaired pathogen handling by the innate immune system is a key determinant of susceptibility to bacterial infection. However, the essential components of this response, specifically those which are amenable to re-calibration to improve host defense, remain elusive despite extensive research. We provide a mini-review focusing on therapeutic targeting of microbicidal responses in macrophages and neutrophils to de-stress reliance on antimicrobial therapy. We highlight pre-clinical and clinical data pointing toward potential targets and therapies. We suggest that developing focused host-directed therapeutic strategies to enhance “pauci-inflammatory” microbial killing in myeloid phagocytes that maximizes pathogen clearance while minimizing the harmful consequences of the inflammatory response merits particular attention. We also suggest the importance of One Health approaches in developing host-based approaches through model development and comparative medicine in informing our understanding of how to deliver this strategy.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue-Resident Macrophage Ontogeny and Homeostasis.

          Defining the origins and developmental pathways of tissue-resident macrophages should help refine our understanding of the role of these cells in various disease settings and enable the design of novel macrophage-targeted therapies. In recent years the long-held belief that macrophage populations in the adult are continuously replenished by monocytes from the bone marrow (BM) has been overturned with the advent of new techniques to dissect cellular ontogeny. The new paradigm suggests that several tissue-resident macrophage populations are seeded during waves of embryonic hematopoiesis and self-maintain independently of BM contribution during adulthood. However, the exact nature of the embryonic progenitors that give rise to adult tissue-resident macrophages is still debated, and the mechanisms enabling macrophage population maintenance in the adult are undefined. Here, we review the emergence of these concepts and discuss current controversies and future directions in macrophage biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.

            Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

              Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery 1 . However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear 2-4 . Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of the TLR signaling adapter tumor necrosis factor receptor-associated factor 6 (TRAF6) to mitochondria where it engages evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a protein implicated in mitochondrial respiratory chain assembly 5 . Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT and TRAF6 depleted macrophages exhibit decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results therefore reveal a novel pathway linking innate immune signaling to mitochondria, implicate mROS as important components of antibacterial responses, and further establish mitochondria as hubs for innate immune signaling.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                05 June 2020
                2020
                : 11
                : 786
                Affiliations
                [1] 1Department of Infection Medicine, University of Edinburgh , Edinburgh, United Kingdom
                [2] 2Centre for Inflammation Research, University of Edinburgh , Edinburgh, United Kingdom
                [3] 3Roslin Institute, University of Edinburgh , Edinburgh, United Kingdom
                [4] 4Institute of Microbiology and Infection, University of Birmingham , Birmingham, United Kingdom
                [5] 5Institute of Cellular Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust , Newcastle upon Tyne, United Kingdom
                [6] 6Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School , Sheffield, United Kingdom
                Author notes

                Edited by: Marco Rinaldo Oggioni, University of Leicester, United Kingdom

                Reviewed by: Arshad Khan, University of Texas Health Science Center at Houston, United States; Catherine Ropert, Federal University of Minas Gerais, Brazil; Joseph Wanford, University of Leicester, United Kingdom

                *Correspondence: David H. Dockrell david.dockrell@ 123456ed.ac.uk

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.00786
                7289984
                32582139
                70202f52-9cbb-4426-a44b-8dd85fd4aca4
                Copyright © 2020 Watson, Russell, Baillie, Dhaliwal, Fitzgerald, Mitchell, Simpson, Renshaw and Dockrell.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 February 2020
                : 07 April 2020
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 93, Pages: 12, Words: 8281
                Funding
                Funded by: Medical Research Council 10.13039/501100000265
                Categories
                Immunology
                Review

                Immunology
                antimicrobial resistance,macrophage,neutrophil,host-based therapies,innate immunity
                Immunology
                antimicrobial resistance, macrophage, neutrophil, host-based therapies, innate immunity

                Comments

                Comment on this article