43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neonatal pain: What's age got to do with it?

      other
      *
      Surgical Neurology International
      Medknow Publications & Media Pvt Ltd
      Neonate, neurodevelopment, pain, preterm infant, pain processing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          The neurobiology of neonatal pain processing, especially in preterm infants, differs significantly from older infants, children, adolescence, and adults. Research suggests that strong painful procedures or repeated mild procedures may permanently modify individual pain processing. Acute injuries at critical developmental periods are risk factors for persistent altered neurodevelopment. The purpose of this narrative review is to present the seminal and current literature describing the unique physiological aspects of neonatal pain processing.

          Methods:

          Articles describing the structures and physiological processes that influence neonatal pain were identified from electronic databases Medline, PubMed, and CINAHL.

          Results:

          The representation of neonatal pain physiology is described in three processes: Local peripheral nervous system processes, referred to as transduction; spinal cord processing, referred to as transmission and modulation; and supraspinal processing and integration or perception of pain. The consequences of undermanaged pain in preterm infants and neonates are discussed.

          Conclusion:

          Although the process and pain responses in neonates bear some similarity to processes and pain responses in older infants, children, adolescence, and adults; there are some pain processes and responses that are unique to neonates rendering them at risk for inadequate pain treatment. Moreover, exposure to repeated painful stimuli contributes to adverse long-term physiologic and behavioral sequelae. With the emergence of studies showing that painful experiences are capable of rewiring the adult brain, it is imperative that we treat neonatal pain effectively.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Models and mechanisms of hyperalgesia and allodynia.

          Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms underlying spontaneous patterned activity in developing neural circuits.

              Patterned, spontaneous activity occurs in many developing neural circuits, including the retina, the cochlea, the spinal cord, the cerebellum and the hippocampus, where it provides signals that are important for the development of neurons and their connections. Despite there being differences in adult architecture and output across these various circuits, the patterns of spontaneous network activity and the mechanisms that generate it are remarkably similar. The mechanisms can include a depolarizing action of GABA (gamma-aminobutyric acid), transient synaptic connections, extrasynaptic transmission, gap junction coupling and the presence of pacemaker-like neurons. Interestingly, spontaneous activity is robust; if one element of a circuit is disrupted another will generate similar activity. This research suggests that developing neural circuits exhibit transient and tunable features that maintain a source of correlated activity during crucial stages of development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Surg Neurol Int
                Surg Neurol Int
                SNI
                Surgical Neurology International
                Medknow Publications & Media Pvt Ltd (India )
                2229-5097
                2152-7806
                2014
                13 November 2014
                : 5
                : Suppl 13 , SNI: Neuroscience Nursing, a supplement to Surgical Neurology International
                : S479-S489
                Affiliations
                [1]Assistant Professor of Evidence-based Practice, Department of Family and Community Health University of Pennsylvania School of Nursing, Director of Research and Evidence-based practice, Pennsylvania Hospital, USA
                Author notes
                [* ]Corresponding author
                Article
                SNI-5-479
                10.4103/2152-7806.144630
                4253046
                25506507
                7085701d-15ae-4388-8d65-46853867a3b9
                Copyright: © 2014 Hatfield LA.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 June 2014
                : 10 July 2014
                Categories
                Surgical Neurology International: Neuroscience Nursing

                Surgery
                neonate,neurodevelopment,pain,preterm infant,pain processing
                Surgery
                neonate, neurodevelopment, pain, preterm infant, pain processing

                Comments

                Comment on this article