Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Age hardening of forged aluminum components – distortion behavior after gas quenching

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In quenching of age hardenable aluminum alloys, today predominantly aqueous quenching media are used, which can lead to a non-uniform cooling of the components due to the Leidenfrost phenomenon, and thus to distortion. In relation to the conventional quenching procedures in aqueous media, gas quenching has a number of technological, ecological, and economical advantages. The quenching intensity can be adjusted by the variable parameters gas pressure, gas velocity as well as the kind of gas and thus can be adapted to the requirements of the component. By the higher uniformity and the better reproducibility, gas quenching offers a high potential for reducing distortion. It could be demonstrated that characteristic shape and dimension changes of forged components of the spray formed aluminum alloy DISPAL S232 (Al-17Si-4Fe-3Cu-0.5Mg-0.4Zr) are clearly lower after gas quenching than after water quenching. Thereby suitable processes proved to be high-pressure gas quenching with nitrogen at 10 bar as well as air quenching in a gas nozzle field. Cost saving would be possible, because of reduced distortion and therefore less reworking.

          Kurzfassung

          Bei der Abschreckung von Aluminiumlegierungen werden heutzutage überwiegend wässrige Abschreckmedien verwendet, die allerdings aufgrund des Leidenfrost-Phänomens zu einer ungleichmäßigen Abkühlung des Bauteils und damit zu Verzug führen können. Gegenüber den konventionellen Abschreckverfahren in wässrigen Medien weist das Gasabschrecken eine Reihe technologischer, ökologischer und ökonomischer Vorteile auf. Die Abschreckintensität lässt sich durch die variablen Parameter Gasdruck, Gasgeschwindigkeit und Gasart einstellen und den Erfordernissen des Werkstoffs bzw. des Werkstücks anpassen. Durch die höhere Gleichmäßigkeit und bessere Reproduzierbarkeit bietet die Gasabschreckung ein hohes Potenzial zur Verzugsreduzierung. An Schmiedeteilen der sprühkompaktierten Aluminiumlegierung DISPAL S232 (AlSi17Fe4Cu3Mg0,5Zr0,4) konnten deutlich geringere Maß- und Formänderungen nach der Gasabschreckung im Vergleich zur Wasserabschreckung erzielt werden. Dabei erwiesen sich sowohl die Hochdruck-Gasabschreckung mit Stickstoff bei 10 bar als auch die Abschreckung mit Luft in einem Gasdüsenfeld als geeignete Verfahren. Ausschuss bzw. Nacharbeit durch Wärmebehandlungsverzug in Fertigungsketten von Aluminiumbauteilen kann folglich reduziert und Fertigungskosten können gesenkt werden.

          Related collections

          Most cited references 4

          • Record: found
          • Abstract: not found
          • Article: not found

          An Overview of Advances in Atmosphere and Vacuum Heat Treatment

           B Edenhofer (1999)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Einzelhärtung von Serienteilen in Gasdüsenformen

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Innovations in Quenching Systems and Equipment: Current Status and Future Developments

                Bookmark

                Author and article information

                Journal
                htmd
                HTM Härtereitechnische Mitteilungen
                Carl Hanser Verlag
                0341-101X
                2194-1831
                2007
                : 62
                : 2
                : 58-61
                Author notes

                Dipl.-Ing. Andrea Rose, born in 1973, studied Production Engineering at the University Bremen, Germany. Since 2004 she works as Research Engineer at the Foundation Institute for Materials Science (IWT) in Bremen.

                Prof. Dr.-Ing. habil. Olaf Keßler, born in 1965, studied Production Engineering at the University of Bremen. Between 1989 and 2006 he worked at the Foundation Institute of Materials Science, Bremen, and was Head of the department “Light Weight Materials”. He finished his dissertation in 1995 and his postdoctoral lecture qualification in 2003. Since 2007 he is Professor of Materials Science in the Faculty of Mechanical Engineering and Marine Technology at the Unversity of Rostock.

                Apl. Prof. Dr.-Ing. habil. Franz Hoffmann, born in 1950, studied Mechanical Engineering at the University Karlsruhe. Since 1975 he operates at the Foundation Institute for Material Science in Bremen and there he is the Head of the Heat Treatment Department.

                Prof. Dr. Ing. Hans-Werner Zoch, born in 1953, studied Mechanical and Process Engineering at the Technical University in Darmstadt and received his ph. d. at the faculty of Production Engineering at the University in Bremen. From 1980 till 2003 he worked for FAG Kugelfischer Georg Schäfer AG in Schweinfurt and later as Managing Director at Neue Materialien Bayreuth GmbH. Since 2004 he is Professor for Materials Science / Metals at the faculty of Production Engineering at the University in Bremen, Managing Director of the Foundation Institute for Materials Science and Coordinator of the Collaborative Research Center (SFB 570) “Distortion Engineering”.

                Dr.-Ing. Peter Krug, born in 1965, studied Materials Science at the University Erlangen, Germany. There he earned his Doctor's degree in the field of directional solidification of turbine blades by liquid metal cooling. He started in 1998 in the industry at AUDI AG, Ingolstadt, Germany, at the Department “Materials, Processes and Recycling”. In 1999 he became the Head of the Casting Laboratory at “Aluminium Rheinfelden GmbH, Rheinfelden, Germany. Since 2001 he is the responsible for the R&D-Department of PEAK Werkstoff GmbH, Velbert, Germany.

                Revised lecture held by A. Rose at the Int. Conf. Aluminium Alloys 2006, ICAA10, July 9–13, 2006 in Vancouver/Canada.

                Article
                HT100407
                10.3139/105.100407
                © 2007, Carl Hanser Verlag, München
                Page count
                References: 4, Pages: 4
                Product
                Self URI (journal page): http://www.hanser-elibrary.com/loi/htme
                Categories
                Fachbeiträge/Technical Contributions

                Comments

                Comment on this article