10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zinc Metallochaperones as Mutant p53 Reactivators: A New Paradigm in Cancer Therapeutics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Restoration of wild-type structure and function to mutant p53 with a small molecule (hereafter referred to as “reactivating” mutant p53) is one of the holy grails in cancer therapeutics. The majority of TP53 mutations are missense which generate a defective protein that is targetable. We are currently developing a new class of mutant p53 reactivators called zinc metallochaperones (ZMCs) and, here, we review our current understanding of them. The p53 protein requires the binding of a single zinc ion, coordinated by four amino acids in the DNA binding domain, for proper structure and function. Loss of the wild-type structure by impairing zinc binding is a common mechanism of inactivating p53. ZMCs reactivate mutant p53 using a novel two-part mechanism that involves restoring the wild-type structure by reestablishing zinc binding and activating p53 through post-translational modifications induced by cellular reactive oxygen species (ROS). The former causes a wild-type conformation change, the later induces a p53-mediated apoptotic program to kill the cancer cell. ZMCs are small molecule metal ion chelators that bind zinc and other divalent metal ions strong enough to remove zinc from serum albumin, but weak enough to donate it to mutant p53. Recently we have extended our understanding of the mechanism of ZMCs to the role of cells’ response to this zinc surge. We found that cellular zinc homeostatic mechanisms, which normally function to maintain free intracellular zinc levels in the picomolar range, are induced by ZMCs. By normalizing zinc levels, they function as an OFF switch to ZMCs because zinc levels are no longer sufficiently high to maintain a wild-type structure. This on/off switch leads to a transient nature to the mechanism of ZMCs in which mutant p53 activity comes on in a few hours and then is turned off. This finding has important implications for the translation of ZMCs to the clinic because it indicates that ZMC concentrations need not be maintained at high levels for their activity. Indeed, we found that short exposures (as little as 15 min) were adequate to observe the mutant p53 reactivating activity. This switch mechanism imparts an advantage over other targeted therapeutics in that efficacy can be accomplished with minimal exposure which minimizes toxicity and maximizes the therapeutic window. This on/off switch mechanism is unique in targeted cancer therapeutics and will impact the design of human clinical trials.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mutant p53 in Cancer: New Functions and Therapeutic Opportunities

          Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutant p53: one name, many proteins.

            There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence.

              Cell-cycle arrest, apoptosis, and senescence are widely accepted as the major mechanisms by which p53 inhibits tumor formation. Nevertheless, it remains unclear whether they are the rate-limiting steps in tumor suppression. Here, we have generated mice bearing lysine to arginine mutations at one (p53(K117R)) or three (p53(3KR); K117R+K161R+K162R) of p53 acetylation sites. Although p53(K117R/K117R) cells are competent for p53-mediated cell-cycle arrest and senescence, but not apoptosis, all three of these processes are ablated in p53(3KR/3KR) cells. Surprisingly, unlike p53 null mice, which rapidly succumb to spontaneous thymic lymphomas, early-onset tumor formation does not occur in either p53(K117R/K117R) or p53(3KR/3KR) animals. Notably, p53(3KR) retains the ability to regulate energy metabolism and reactive oxygen species production. These findings underscore the crucial role of acetylation in differentially modulating p53 responses and suggest that unconventional activities of p53, such as metabolic regulation and antioxidant function, are critical for suppression of early-onset spontaneous tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                29 May 2018
                June 2018
                : 10
                : 6
                : 166
                Affiliations
                [1 ]Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; samkogan@ 123456cinj.rutgers.edu
                [2 ]Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
                [3 ]Department of Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
                [4 ]Z53 Therapeutics, Inc., Holmdel, NJ 07733, USA
                Author notes
                [* ]Correspondence: carpizdr@ 123456cinj.rutgers.edu ; Tel.: +732-235-7701; Fax: +732-235-8098
                Article
                cancers-10-00166
                10.3390/cancers10060166
                6025018
                29843463
                70edadb3-9cdc-428a-8358-ee2185898df5
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 May 2018
                : 23 May 2018
                Categories
                Review

                zinc metallochaperones,mutant p53,on/off switch mechanism,zinc homeostasis,pancreatic cancer

                Comments

                Comment on this article