Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Individual variation in energy-saving heterothermy affects survival and reproductive success

      , , , ,
      Functional Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Behavioural reaction norms: animal personality meets individual plasticity

          Recent studies in the field of behavioural ecology have revealed intriguing variation in behaviour within single populations. Increasing evidence suggests that individual animals differ in their average level of behaviour displayed across a range of contexts (animal 'personality'), and in their responsiveness to environmental variation (plasticity), and that these phenomena can be considered complementary aspects of the individual phenotype. How should this complex variation be studied? Here, we outline how central ideas in behavioural ecology and quantitative genetics can be combined within a single framework based on the concept of 'behavioural reaction norms'. This integrative approach facilitates analysis of phenomena usually studied separately in terms of personality and plasticity, thereby enhancing understanding of their adaptive nature. Copyright 2009 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ecologist's guide to the animal model.

            1. Efforts to understand the links between evolutionary and ecological dynamics hinge on our ability to measure and understand how genes influence phenotypes, fitness and population dynamics. Quantitative genetics provides a range of theoretical and empirical tools with which to achieve this when the relatedness between individuals within a population is known. 2. A number of recent studies have used a type of mixed-effects model, known as the animal model, to estimate the genetic component of phenotypic variation using data collected in the field. Here, we provide a practical guide for ecologists interested in exploring the potential to apply this quantitative genetic method in their research. 3. We begin by outlining, in simple terms, key concepts in quantitative genetics and how an animal model estimates relevant quantitative genetic parameters, such as heritabilities or genetic correlations. 4. We then provide three detailed example tutorials, for implementation in a variety of software packages, for some basic applications of the animal model. We discuss several important statistical issues relating to best practice when fitting different kinds of mixed models. 5. We conclude by briefly summarizing more complex applications of the animal model, and by highlighting key pitfalls and dangers for the researcher wanting to begin using quantitative genetic tools to address ecological and evolutionary questions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A simple method for distinguishing within- versus between-subject effects using mixed models

                Bookmark

                Author and article information

                Journal
                Functional Ecology
                Funct Ecol
                Wiley-Blackwell
                02698463
                April 2017
                April 2017
                : 31
                : 4
                : 866-875
                Article
                10.1111/1365-2435.12797
                71606eed-bdd9-485d-95c7-28753108d442
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article