12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis.

          Related collections

          Author and article information

          Journal
          Int. J. Food Microbiol.
          International journal of food microbiology
          Elsevier BV
          1879-3460
          0168-1605
          Feb 17 2014
          : 172
          Affiliations
          [1 ] Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain. Electronic address: arribas@inia.es.
          [2 ] Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7, 28040 Madrid, Spain.
          [3 ] Instituto Tecnológico Agrario de Castilla y León (ITACyL), Carretera de Burgos Km 119, 47071 Valladolid, Spain.
          Article
          S0168-1605(13)00569-2
          10.1016/j.ijfoodmicro.2013.12.002
          24361835
          71784d0e-f8a5-451c-8d98-bfe1ec4da574
          History

          Antimicrobials,Clostridium,Nisin,Reuterin,Spores,Vegetative cells

          Comments

          Comment on this article