28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma multiforme (GBM) possesses florid angiogenesis. However, the anti-angiogenic agent, Bevacizumab, did not improve overall survival of GBM patients. For more durable anti-angiogenic treatment, we interrogated resistant mechanisms of GBM against Bevacizumab. Serial orthotopic transplantation of in vivo Bevacizumab-treated GBM cells provoked complete refractoriness to the anti-angiogenic treatment. These tumors were also highly enriched with malignant phenotypes such as invasiveness, epithelial to mesenchymal transition, and stem-like features. Through transcriptome analysis, we identified that Talin1 (TLN1) significantly increased in the refractory GBMs. Inhibition of TLN1 not only attenuated malignant characteristics of GBM cells but also reversed the resistance to the Bevacizumab treatment. These data implicate TLN1 as a novel therapeutic target for GBM to overcome resistance to anti-angiogenic therapies.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in brain tumours.

          Despite aggressive surgery, radiotherapy and chemotherapy, malignant gliomas remain uniformly fatal. To progress, these tumours stimulate the formation of new blood vessels through processes driven primarily by vascular endothelial growth factor (VEGF). However, the resulting vessels are structurally and functionally abnormal, and contribute to a hostile microenvironment (low oxygen tension and high interstitial fluid pressure) that selects for a more malignant phenotype with increased morbidity and mortality. Emerging preclinical and clinical data indicate that anti-VEGF therapies are potentially effective in glioblastoma--the most frequent primary brain tumour--and can transiently normalize tumour vessels. This creates a window of opportunity for optimally combining chemotherapeutics and radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy.

            Vascular endothelial growth factor A (VEGF-A), the founding member of the vascular permeability factor (VPF)/VEGF family of proteins, is an important angiogenic cytokine with critical roles in tumor angiogenesis. This article reviews the literature with regard to VEGF-A's multiple functions, the mechanisms by which it induces angiogenesis, and its current and projected roles in clinical oncology. VEGF-A is a multifunctional cytokine that is widely expressed by tumor cells and that acts through receptors (VEGFR-1, VEGFR-2, and neuropilin) that are expressed on vascular endothelium and on some other cells. It increases microvascular permeability, induces endothelial cell migration and division, reprograms gene expression, promotes endothelial cell survival, prevents senescence, and induces angiogenesis. Recently, VEGF-A has also been shown to induce lymphangiogenesis. Measurements of circulating levels of VEGF-A may have value in estimating prognosis, and VEGF-A and its receptors are potential targets for therapy. Recognized as the single most important angiogenic cytokine, VEGF-A has a central role in tumor biology and will likely have an important role in future approaches designed to evaluate patient prognosis. It may also become an important target for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence.

              Bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor, may have activity in recurrent malignant gliomas. At recurrence some patients appear to develop nonenhancing infiltrating disease rather than enhancing tumor. We retrospectively reviewed 55 consecutive patients with recurrent malignant gliomas who received bevacizumab and chemotherapy to determine efficacy, toxicity, and patterns of recurrence. Using a blinded, standardized imaging review and quantitative volumetric analysis, the recurrence patterns of patients treated with bevacizumab were compared to recurrence patterns of 19 patients treated with chemotherapy alone. A total of 2.3% of patients had a complete response, 31.8% partial response, 29.5% minimal response, and 29.5% had stable disease. Median time to radiographic progression was 19.3 weeks. Six-month progression-free survival (PFS) was 42% for patients with glioblastoma and 32% for patients with anaplastic glioma. In 23 patients who progressed on their initial therapy, bevacizumab was continued and the concurrent chemotherapy agent changed. In no case did the change produce a radiographic response, but two patients had prolonged PFS of 20 and 31 weeks. Recurrence pattern analysis identified a significant increase in the volume of infiltrative tumor relative to enhancing tumor in bevacizumab responders. Combination therapy with bevacizumab and chemotherapy is well-tolerated and active against recurrent malignant gliomas. At recurrence, continuing bevacizumab and changing the chemotherapy agent provided long-term disease control only in a small subset of patients. Bevacizumab may alter the recurrence pattern of malignant gliomas by suppressing enhancing tumor recurrence more effectively than it suppresses nonenhancing, infiltrative tumor growth.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 September 2015
                20 August 2015
                : 6
                : 29
                : 27239-27251
                Affiliations
                1 Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
                2 Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
                3 Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
                4 Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
                5 Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
                Author notes
                Correspondence to:Do-Hyun Nam, nanam@ 123456skku.edu
                Kyeung Min Joo, kmjoo@ 123456skku.edu
                Article
                10.18632/oncotarget.4835
                4694986
                26336988
                71be9301-e8cf-4ea4-9503-713e25fc94e8
                Copyright: © 2015 Kang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 April 2015
                : 7 August 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                glioblastoma multiforme,anti-angiogenic therapy,bevacizumab-resistance,talin1,patient derived xenograft models

                Comments

                Comment on this article