18
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Icebergs not the trigger for North Atlantic cold events

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abrupt climate change is a ubiquitous feature of the Late Pleistocene epoch. In particular, the sequence of Dansgaard-Oeschger events (repeated transitions between warm interstadial and cold stadial conditions), as recorded by ice cores in Greenland, are thought to be linked to changes in the mode of overturning circulation in the Atlantic Ocean. Moreover, the observed correspondence between North Atlantic cold events and increased iceberg calving and dispersal from ice sheets surrounding the North Atlantic has inspired many ocean and climate modelling studies that make use of freshwater forcing scenarios to simulate abrupt change across the North Atlantic region and beyond. On the other hand, previous studies identified an apparent lag between North Atlantic cooling events and the appearance of ice-rafted debris over the last glacial cycle, leading to the hypothesis that iceberg discharge may be a consequence of stadial conditions rather than the cause. Here we further establish this relationship and demonstrate a systematic delay between pronounced surface cooling and the arrival of ice-rafted debris at a site southwest of Iceland over the past four glacial cycles, implying that in general icebergs arrived too late to have triggered cooling. Instead we suggest that--on the basis of our comparisons of ice-rafted debris and polar planktonic foraminifera--abrupt transitions to stadial conditions should be considered as a nonlinear response to more gradual cooling across the North Atlantic. Although the freshwater derived from melting icebergs may provide a positive feedback for enhancing and or prolonging stadial conditions, it does not trigger northern stadial events.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The production of North Atlantic Deep Water: Sources, rates, and pathways

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming.

              We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO(2) forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                April 2015
                April 15 2015
                April 2015
                : 520
                : 7547
                : 333-336
                Article
                10.1038/nature14330
                25877202
                71d6625a-b914-474d-9f6b-c7483c999bd0
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article